题目链接:Click here~~
题意:
给出一个有向图,找一条环,使得环上的 点权之和/边权之和 最大。
解题思路:
此题仍是 01分数规划 的应用,和 最优比例生成树 也比较像。
令 L = ∑a[i]*x[i] / ∑b[i]*x[i](x[i] = {0,1} 表示是否选取 i 这条边,a[i] 表示 i 这条边始点或末点的点权,b[i] 表示 i 这条边的边权,路径必须是回路)。
转成另外一个问题,我们令 Z = ∑( a[i] - L * b[i] ) * x[i] 最大。即令 Z' = ∑( L * b[i] - a[i] ) * x[i] 最小。
如果对于某个 L ,Z' 的最小值小于0,说明 L 小于 Lmax。而判断 Z' 的最小值是否小于0等价于判断图中是否有负环。如此,问题解决了。
Ps. Z => Z‘ 以及之后的分析很关键,要仔细思考。
#include <queue>
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
const int N = 1e3 + 5;
template<int N,int M>
struct Graph
{
int top;
struct Vertex{
int head;
}V[N];
struct Edge{
int v,next;
double w;
}E[M];
void init(){
memset(V,-1,sizeof(V));
top = 0;
}
void add_edge(int u,int v,double w){
E[top].v = v;
E[top].w = w;
E[top].next = V[u].head;
V[u].head = top++;
}
};
Graph<1003,5003> g,gg;
int wp[N];
void build(int n,double L)
{
gg.init();
for(int u=1;u<=n;u++)
{
for(int i=g.V[u].head;~i;i=g.E[i].next)
{
int v = g.E[i].v;
double w = g.E[i].w;
gg.add_edge(u,v,L*w-wp[v]);
}
}
}
int inqCnt[N];
double d[N];
bool inq[N];
bool spfa(int s,int n)
{
memset(inqCnt,0,sizeof(inqCnt));
memset(inq,false,sizeof(inq));
memset(d,127,sizeof(d));
queue<int> Q;
Q.push(s);
inq[s] = true;
inqCnt[s] = 1;
d[s] = 0;
while(!Q.empty())
{
int u = Q.front();
for(int i=gg.V[u].head;~i;i=gg.E[i].next)
{
int v = gg.E[i].v;
double w = gg.E[i].w;
if(d[u] + w < d[v])
{
d[v] = d[u] + w;
if(!inq[v])
{
Q.push(v);
inq[v] = true;
if(++inqCnt[v] >= n)
return false;
}
}
}
Q.pop();
inq[u] = false;
}
return true;
}
const double eps = 1e-4;
int main()
{
int n,m;
while(~scanf("%d%d",&n,&m))
{
g.init();
for(int i=1;i<=n;i++)
scanf("%d",&wp[i]);
for(int i=0;i<m;i++)
{
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
g.add_edge(u,v,w);
}
double l = 0 , r = 1000;
while(r-l > eps)
{
double mid = (l+r) / 2;
build(n,mid);
if(spfa(1,n))
r = mid;
else
l = mid;
}
printf("%.2f\n",r);
}
return 0;
}