CF1208H Red Blue Tree

CF1208H Red Blue Tree

原本应该放在这里但是这题过于毒瘤。。单独开了篇blog

首先考虑如果 $ k $ 无限小,那么显然整个树都是蓝色的。随着 $ k $ 逐渐增大,每个点都会有且仅有一次变色,我们考虑维护这个变色的时间 $ t $ 。如果每个点的变色时间都已经被算出来,那么我们可以轻易解决题目的查询操作和修改 $ k $ , 也就是说修改 $ k $ 本身就是个假操作。。只需要考虑的是修改单点颜色。

修改单点颜色,看起来就很 $ ddp $ 。树链剖分后,用$ f(x) = {a,b} $ 表示点 $ x $ 重儿子是 R 时的临界值是 $ a $ ,重儿子是 B 时临界值是 $ b $ 。

发现 $ f $ 这个东西是可以合并的!于是可以愉快地用线段树维护了呢~

但是除开重儿子怎么做呢,考虑每个点再开一个 BST 维护轻儿子当前的边界值。这个可以预处理的时候实现。同时我们意识到 $ \sum x $ ( $ x $ 是边界值 ) 是 $ n $ 级别的,所以我们可以对于每个点暴力出最开始的边界。具体的暴力方法是在build链剖后的线段树时先处理右子树,这样总可以保证处理到一个点时它的轻儿子都已经被插入到了它自己的平衡树,然后直接枚举边界值在平衡树判断就好了。

由于每次修改一个叶子,它的祖先的边界变化量是 $ O(1) $ 的,所以修改的复杂度是 $ O(log^2n) $

只是很难写

Orz LJZ_C 吊踩标算

#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
using namespace std;
#define MAXN 200006
int n , k;

#define Update( cur ) if( cur -> left -> size ) cur -> size = cur -> left -> size + cur -> right -> size , cur -> value = cur -> right -> value
#define new_Node( s , v , a , b ) ( & ( * st[ cnt++ ] = Node( s , v , a , b ) ) )
#define Merge( a , b ) new_Node( a -> size + b -> size , b -> value , a , b )
#define ratio 4
namespace BST {
    int cnt , s , a;
    struct Node {
        int size , value;
        Node * left , * right;
        Node( int s , int v , Node * a , Node * b ) : size( s ) , value( v ) , left( a ) , right( b ) {}
        Node() {}
    } * root[1000000] , * father , * st[1000000] , t[1000000] , * null;
    
    inline void maintain( register Node * cur ) {
        if( cur -> left -> size > cur -> right -> size * ratio ) cur -> right = Merge( cur -> left -> right , cur -> right ) , st[ --cnt ] = cur -> left , cur -> left = cur -> left -> left;
        if( cur -> right -> size > cur -> left -> size * ratio ) cur -> left = Merge( cur -> left , cur -> right -> left ) , st[ --cnt ] = cur -> right , cur -> right = cur -> right -> right;
    }
    
    int find( int x , Node * cur ) {
        if( cur -> size == 1 ) return cur -> value;
        return x > cur -> left -> size ? find( x - cur -> left -> size , cur -> right ) : find( x , cur -> left );
    }
    
    int Rank( int x , Node * cur ) {
        if( cur -> size == 1 ) return 1;
        return x > cur -> left -> value ? Rank( x , cur -> right ) + cur -> left -> size : Rank( x , cur -> left );
    }
    
    void insert( int x , Node * cur ) {
        if( cur -> size == 1 ) cur -> left = new_Node( 1 , min( cur -> value , x ) , null , null ) , cur -> right = new_Node( 1 , max( cur -> value , x ) , null , null );
        else insert( x , x > cur -> left -> value ? cur -> right : cur -> left );
        Update( cur );
        maintain( cur );
    }
    
    void erase( int x , Node * cur ) {
        if( cur -> size == 1 ) * father = cur == father -> left ? * father -> right : * father -> left;
        else father = cur , erase( x , x > cur -> left -> value ? cur -> right : cur -> left );
        Update( cur );
        maintain( cur );
    }
    
    void init( ) {
        null = new Node( 0 , 0 , 0 , 0 );
        for( int i = 0 ; i < 1000000 ; ++ i ) st[i] = & t[i] , root[i] = new Node( 1 , 0x7f7f7f7f , null , null );
    }
    
}

int head[MAXN] , nex[MAXN << 1] , to[MAXN << 1] , ecn = 0;
void ade( int u , int v ) {
    nex[++ecn] = head[u] , to[ecn] = v , head[u] = ecn; 
}
int fa[MAXN] , siz[MAXN] , hea[MAXN] , dep[MAXN] , top[MAXN] , tig[MAXN] , bac[MAXN] , en[MAXN] , clo;
void dfs( int u , int faa ) {
    siz[u] = 1 , dep[u] = dep[faa] + 1;
    for( int i = head[u] ; i ; i = nex[i] ) {
        int v = to[i];
        if( v == faa ) continue;
        fa[v] = u;
        dfs( v , u );
        siz[u] += siz[v];
        if( !hea[u] || siz[v] > siz[hea[u]] ) hea[u] = v;
    }
}
void dfss( int u , int too ) {
    tig[u] = ++ clo , bac[clo] = u , en[too] = u , top[u] = too;
    if( !hea[u] ) return;
    dfss( hea[u] , too );
    for( int i = head[u] ; i ; i = nex[i] ) {
        int v = to[i];
        if( v == fa[u] || v == hea[u] ) continue;
        dfss( v , v );
    }
}

int col[MAXN];

struct node{
    int l , r;
    node( int L = 0 , int R = 0 ) : l(L) , r(R) { }
} T[MAXN << 2] , red( 0x3f3f3f3f , 0x3f3f3f3f ) , blu( -0x3f3f3f3f , -0x3f3f3f3f ) ;
int rec[MAXN];
// T[rt].l : if rt's heavy son is red , the value k to satisfy that this node is red
// T[rt].r : if rt's heavy son is blu , the value k to satisfy that this node is red
// b : 0 , r : 1
bool judge( int u , int k , int d ) { 
    // return we add d red nodes to its son if the node is red.
    int B = BST :: Rank( k + 1 , BST :: root[u] ) - 1;
    int R = BST :: Rank( 0x7f7f7f7f , BST :: root[u] ) - 1 - B;
    return k >= R - B - d;
}
void update( int u , int& k , int d ) {
    while( !judge( u , k , d ) ) ++ k;
    while( judge( u , k - 1 , d ) ) -- k;
}
void work( int rt , int u ) {
    if( col[u] == 0 ) {
        T[rt] = red;
    } else if( col[u] == 1 ) {
        T[rt] = blu;
    } else {
        update( u , T[rt].l , 1 );
        update( u , T[rt].r , -1 );
    }
}
node merge( node a , node b ) {
    node ret;
    ret.l = min( max( b.l , a.l ) , a.r );
    ret.r = min( max( b.r , a.l ) , a.r );
    return ret;
}
void pushup( int rt ) {
    T[rt] = merge( T[rt << 1] , T[rt << 1 | 1] );
}
node query( int rt , int l , int r , int L , int R ) {
    if( l == L && r == R ) return T[rt];
    int m = l + r >> 1;
    if( R <= m ) return query( rt << 1 , l , m , L , R );
    if( L > m ) return query( rt << 1 | 1 , m + 1 , r , L , R );
    return merge( query( rt << 1 , l , m , L , m ) , query( rt << 1 | 1 , m + 1 , r , m + 1 , R ) );
}
void build( int rt , int l , int r ) {
    if( l == r ) {
        int u = bac[l];
        work( rt , u );
        if( u == top[u] && fa[u] ) 
            BST :: insert( ( rec[u] = ( query( 1 , 1 , n , l , tig[en[u]] ) ).l ) , BST :: root[fa[u]] );
        return;
    }
    int mid = l + r >> 1;
    build( rt << 1 | 1 , mid + 1 , r ) , build( rt << 1 , l , mid );
    pushup( rt );
}
void mdfy( int rt , int l , int r , int p ) {
    if( l == r ) { work( rt , bac[l] ); return; }
    int m = l + r >> 1;
    if( p <= m ) mdfy( rt << 1 , l , m , p );
    else mdfy( rt << 1 | 1 , m + 1 , r , p );
    pushup( rt );
}
void modify( int x , int c ) {
    col[x] = c;
    while( x ) {
        mdfy( 1 , 1 , n , tig[x] );
        x = top[x];
        if( fa[x] != 0 ) {
            BST :: erase( rec[x] , BST :: root[fa[x]] );
            BST :: insert( rec[x] = (query( 1 , 1 , n , tig[x] , tig[en[x]] ).l ) , BST :: root[fa[x]] );
        }
        x = fa[x];
    }
}

int main() {
    BST :: init( );
    cin >> n >> k;
    for( int i = 1 , u , v ; i < n ; ++ i ) {
        scanf("%d%d",&u,&v);
        ade( u , v ) , ade( v , u );
    }
    for( int i = 1 ; i <= n ; ++ i ) scanf("%d",&col[i]);
    dfs( 1 , 1 );
    dfss( 1 , 1 );
    build( 1 , 1 , n );
    int q , opt , v , c; cin >> q;
    while( q-- ) {
        scanf("%d",&opt);
        if( opt == 1 ) {
            scanf("%d",&v);
            printf("%d\n",( query( 1 , 1 , n , tig[v] , tig[en[top[v]]] ).l ) <= -k);
        } else if( opt == 2 ) {
            scanf("%d%d",&v,&c);
            modify( v , c );
        } else {
            scanf("%d",&c);
            k = c;
        }
        
    }
}

转载于:https://www.cnblogs.com/yijan/p/cf1208h.html

H3C CF8800是一款高性能的企业级交换机设备,用户手册是为了帮助用户正确配置和使用这款设备而编写的详细指南。 H3C CF8800用户手册主要包括以下内容: 1. 产品介绍:介绍了CF8800交换机的主要特点和硬件结构,包括端口配置、指示灯功能等。用户可以通过阅读这部分内容了解设备的基本情况。 2. 硬件安装:详细介绍了CF8800的安装步骤,包括机柜安装、电源连接、网线连接、风扇插入等。用户可以按照手册中给出的指引一步步完成设备的安装。 3. 系统配置:介绍了CF8800的系统配置方法,包括设备开机、登录认证、管理口配置等。用户可以根据手册中的说明设置设备的基本参数。 4. VLAN配置:详细介绍了CF8800的VLAN配置方法,包括新建VLAN、端口划分、端口模式设置等。用户可以根据手册中的指引配置设备的VLAN。 5. 路由配置:介绍了CF8800的路由配置方法,包括静态路由、动态路由、路由汇总等。用户可以按照手册中给出的步骤配置设备的路由。 6. 安全配置:详细介绍了CF8800的安全配置方法,包括访问控制列表(ACL)、端口安全、防护组等。用户可以根据手册中的说明加强设备的安全性。 总之,H3C CF8800用户手册是一本重要的工具,可以帮助用户快速熟悉设备的各项功能和配置方法。用户在使用CF8800交换机时,可以随时参考手册来解决设备配置和使用过程中的问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值