- 博客(60)
- 收藏
- 关注
原创 Day56 PythonStudy
cbam3.channel_attn.fc.2.weight: 1,024 个参数 (可训练: True)cbam1.channel_attn.fc.0.weight: 64 个参数 (可训练: True)cbam1.spatial_attn.conv.weight: 98 个参数 (可训练: True)cbam2.spatial_attn.conv.weight: 98 个参数 (可训练: True)cbam3.spatial_attn.conv.weight: 98 个参数 (可训练: True)
2026-01-03 22:22:14
323
原创 Day55 PythonStudy
结果形状: torch.Size([2, 3, 4, 6])A形状: torch.Size([2, 3, 4, 5])结果形状: torch.Size([2, 3, 5])结果形状: torch.Size([3, 2, 5])A形状: torch.Size([2, 3, 4])A形状: torch.Size([3, 2, 4])B形状: torch.Size([1, 4, 5])B形状: torch.Size([4, 5])B形状: torch.Size([5, 6])
2026-01-02 23:17:56
810
原创 Day49 PythonStudy
模块类型: <class 'torch.nn.modules.conv.Conv2d'>原始梯度: tensor([48.])x的梯度: tensor([96.])
2025-12-26 19:37:05
279
原创 Day47 PythonStudy
Epoch: 11/20 | Batch: 100/782 | 单Batch损失: 0.6711 | 累计平均损失: 0.6926。Epoch: 11/20 | Batch: 500/782 | 单Batch损失: 0.8822 | 累计平均损失: 0.7160。Epoch: 11/20 | Batch: 600/782 | 单Batch损失: 0.6480 | 累计平均损失: 0.7192。
2025-12-24 23:33:21
889
原创 Day45 PythonStudy
1. 模型参数与梯度:模型的权重(Parameters)和对应的梯度(Gradients)会占用显存,尤其是深度神经网络(如 Transformer、ResNet 等),一个 1 亿参数的模型(如 BERT-base),单精度(float32)参数占用约 400MB(1e8×4Byte),加上梯度则翻倍至 800MB(每个权重参数都有其对应的梯度)。MLP 的输入层要求输入是一维向量,但 MNIST 图像是二维结构(28×28 像素),形状为 [1, 28, 28](通道 × 高 × 宽)。
2025-12-22 16:01:02
463
原创 Day41 PythonStudy
最小值: -1.002972。最小值: -0.844141。标准差: 0.731057。最大值: 1.861372。标准差: 0.462799。最大值: 0.850177。=== 权重统计信息 ===均值: 0.352668。均值: 0.068480。测试集准确率: 96.67%
2025-12-18 09:47:22
739
原创 Day36 PythonStudy
方式2:使用 from math import pi, sqrt。圆周率π的值:3.141592653589793。2的平方根:1.4142135623730951。圆周率π的值:3.141592653589793。2的平方根:1.4142135623730951。方式1:使用 import math。
2025-12-13 21:18:54
135
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅
1