不容易啊,终于可以补第二个题了!!
顺便说一句:模版写残了就不要怪出题人啊 ~ (这残废模版研究了好长时间才找出错)
题目大意:
有一个n*m的矩阵,每一个格子里都将有一个数。给你每一行数字之和和每一列数字之和。求每一个位置能填0~k之间的哪个数。如果有多种可能输出“Not Unique”,如果没有解输出“Impossible”,如果一组解则将其输出。
解题思路:
最大流: 不可能的条件:是行之和和列之和不想等或者建图后的最大流与他们不想等。
多组的条件是:在最大流后的残流网络中有长度大于2的环(实际中最少大于3)。
下面是代码:
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#define eps 1e-9
#define pi acos(-1.0)
#define inf 107374182
#define inf64 1152921504606846976
#define clear1(A, X, SIZE) memset(A, X, sizeof(A[0]) * (SIZE))
#define clearall(A, X) memset(A, X, sizeof(A))
#define memcopy1(A , X, SIZE) memcpy(A , X ,sizeof(X[0])*(SIZE))
#define memcopy1all(A, X) memcpy(A , X ,sizeof(X))
#define max( x, y ) ( ((x) > (y)) ? (x) : (y) )
#define min( x, y ) ( ((x) < (y)) ? (x) : (y) )
using namespace std;
const int maxn=1000+10;
const int maxm=200000+10;
struct node
{
int v,w,next;
node(int v=0,int w=0,int next=0):v(v),w(w),next(next) {};
} edge[maxm<<1];
int head[maxn],d[maxn],nEdge,S,T;
bool vis[maxn];
int n,m,K;
void addedge(int from,int to,int cap)
{
edge[++nEdge]=node(to,cap,head[from]);
head[from]=nEdge;
edge[++nEdge]=node(from,0,head[to]);
head[to]=nEdge;
}
int deep[maxn];
bool bfs()
{
memset(deep,-1,sizeof(deep));
queue<int>q;
q.push(S);//源点
deep[S]=0;
while(!q.empty())
{
int u=q.front();
q.pop();
int p=head[u];
while(p!=-1)
{
int v=edge[p].v;
if(deep[v]==-1&&edge[p].w>0)
{
q.push(v);
deep[v]=deep[u]+1;
}
p=edge[p].next;
}
}
return deep[T]!=-1; //汇点
}
int DFS(int src ,int flow)
{
if(src==T||flow==0)return flow;
int sum=0,temp;
int p=head[src];
while(p!=-1)
{
int v=edge[p].v;
if(deep[v]==deep[src]+1&&edge[p].w>0)
{
temp=DFS(v,min(flow-sum,edge[p].w));
edge[p].w-=temp;
edge[p^1].w+=temp;
sum+=temp;
if(flow-sum==0) return sum;
}
p=edge[p].next;
}
deep[src]=-1;
return sum;
}
bool dfs(int u,int fa)
{
for(int k=head[u]; k!=-1; k=edge[k].next)
{
if(k==(fa^1)) continue;
if(edge[k].w)
{
if(vis[edge[k].v]) return true;
vis[edge[k].v]=true;
if(dfs(edge[k].v,k)) return true;
vis[edge[k].v]=false;
}
}
return false;
}
int mat[404][404];
void ptmat()
{
printf("Unique\n");
memset(mat,0,sizeof(mat));
for(int u=1; u<=n; ++u)
{
for(int k=head[u]; k!=-1; k=edge[k].next)
{
int v=edge[k].v;
if(v>n&&v<=n+m)
mat[u][v-n]=K-edge[k].w;
}
}
for(int i=1; i<=n; ++i)
{
for(int j=1; j<=m; ++j)
{
if(j>1) printf(" ");
printf("%d",mat[i][j]);
}
printf("\n");
}
}
int main()
{
while(scanf("%d%d%d",&n,&m,&K)!=EOF)
{
memset(head,-1,sizeof(head));
nEdge=-1;
S=0,T=n+m+1;
int sum1=0,sum2=0,w;
for(int i=1; i<=n; ++i)
{
scanf("%d",&w);
sum1+=w;
addedge(S,i,w);
for(int j=1; j<=m; ++j)
addedge(i,j+n,K);
}
for(int i=1; i<=m; ++i)
{
scanf("%d",&w);
sum2+=w;
addedge(i+n,T,w);
}
if(sum1!=sum2) printf("Impossible\n");
else
{
int flow=0;
while(bfs())flow+=DFS(S,inf);
if(flow!=sum1) printf("Impossible\n");
else
{
memset(vis,0,sizeof(vis));
bool flag=false;
for(int i=1; i<=n; ++i)
{
if(dfs(i,-1))
{
flag=true;
break;
}
}
if(flag) printf("Not Unique\n");
else ptmat();
}
}
}
return 0;
}