目录
1.二进制、八进制、十进制、十六进制的理解
(a)二进制:使用比特来表示的数称为二进制数,它的基数是 2,
每个数字称为一个比特(Bit,Binary digit 的缩写),只使用两
个不同的数字符号,即 0 和 1,采用逢二进一的计数规则。
(b)八进制:八进制,Octal,缩写 OCT 或 O,一种以 8 为基数的
计数法,采用 0,1,2,3,4,5,6,7 八个数字,逢八进 1。
(c)十进制:十进制数是由 10 个不同的符号(0123456789)组合
表示的,用字符 D 表示十进制或默认不写,在十进制数中,
基数是 10,它表示这种计数制一共使用 10 个不同的数字符号,
计数规则 是逢十进一。
(d) 十六进制:十六进制(简写为 hex 或下标 16)在数学中是一
种逢 16 进 1 的进位制。一般用数字 0 到 9 和字母 A 到 F(或
a~f)表示,其中:A~F 表示 10~15,这些称作十六进制数字。
2.进制转换
i.
二进制--->十进制
方法为:把二进制数按权展开、相加即得十进制数(2^4,这就表示2的4次方)
(11001.101)
2
=1*2^4
+1*2^
3
+0*2^
2
+0*2^
1
+1*2^
0
+1*2^
(-1)
+0*2^(-2)
+1*2
^
(-3)
=(25.625)
10
ii.
十进制--->二进制
方法为:十进制数除2取余法,即十进制数除2,余数为权位上的数,得到的商值继续除2,依此步骤继续向下运算直到商为0为止。
29------>11101
十进制为小数:乘以 2 顺序取整
(0.6875)
10
=(0.1011)2
2
iii.
二进制--->八进制
方法为:3位二进制数按权展开相加得到1位八进制数。(注意事项,3位二进制转成八进制是从右到左开始转换,不足时补0)。
iv.
十进制--->八进制
整数部分:整数部分,除 8 取余法,每次将整数部分除以
8,余数为该位权上的数,商继续除以 8,余数又为上一个
位权上的数,然后以此类推一直下去,直到商为零,最后
从最后一个余数向前排列就可以了
小数部分:与转二进制相同,这里是乘八取整法,也就是
说小数部分乘以 8,然后取整数部分,再让剩下的小数部分
再乘以 8,再取整数部分,……以此类推,一直乘到小数部
分为零为止。
v.
二进制--->十六进制:
方法为:与二进制转八进制方法近似,八进制是取三合一,十六进制是取四合一。(注意事项,4位二进制转成十六进制是从右到左开始转换,不足时补0)。
vi.
十六进制--->二进制:
方法为:十六进制数通过除2取余法,得到二进制数,对每个十六进制为4个二进制,不足时在最左边补零。