一道有趣的数学证明题

试证明等式:

j=0nk=j+1nCjnCkn(kj)=nC22n2

从北京到广州两个半小时的飞机,上飞机前把题目抄在草稿纸上,心想飞机上无聊正好把这题给做了,做完看看电影睡睡觉估计就到了。然而这道题着实做了两个半小时,距离降落30分钟才搞定完整的解法,把解法在整理一遍的时间都不够。在飞机上一万次想打开手机看答案……

kj=r

=r=1n[pq=r]rCpnCqn

构造多项式.
f(x)=C0n+C1n1x+C2n1x2+...+Cnn1xn=(1+1x)n
g(x)=C0n+C1nx+C2nx2+...+Cnnxn=(1+x)n

我们发现式子右边两个组合数可以表示成这两个多项式乘积的 xr 项系数.

=r=1nr[xr](f(x)g(x))=r=1nr[xr]((1+1x)n(1+x)n)

再观察右边那个式子,相当于多项式 (1+x)2n xn+r 项系数,可以知道这一项系数的值为 Cn+r2n=Cnr2n .
=r=1nrCnr2n

r=n(nr)
=nr=1nCnr2nr=1n(nr)Cnr2n

我们有这么一条公式.
mCmn=mn!m!(nm)!=n!(m1)!(nm)!=n(n1)!(m1)!(nm)!=nCm1n1
=nr=1nCnr2n2nr=1nCnr12n1

根据那几条经典的组合数公式,式子还能化.
=12n(22nCn2n)n(22n12Cn12n1)

拆括号合并同类项啦.
=12n(4Cn12n1Cn2n)

2=2nn ,把组合数拆成阶乘,弄完在转成组合数,就能得到.
=nC22n2

证毕.

写的仓促可能会有写不明白或者写错的地方,欢迎询问欢迎批评指正!

  • 2
    点赞
  • 0
    收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:大白 设计师:CSDN官方博客 返回首页
评论

打赏作者

HbFS-

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值