[bzoj1577][Usaco2009 Feb]庙会捷运Fair Shuttle_贪心_线段树

庙会捷运 Fair Shuttle bzoj-1577 Usaco-2009 Feb

题目大意:有一辆公交车从1走到n。有m群奶牛从$S_i$到$E_i$,第i群奶牛有$W_i$只。车有一个容量c。问不走回头路的情况下最多使多少奶牛到达目的地。其中,每一群奶牛不一定都拉走。

注释:$1\le n\le 2\cdot 10^4$,$1\le m\le 5\cdot 10^4$,$1\le c\le 100$。


想法:开始觉得是个裸贪心,但是没法维护。其实是这样的:

我们将所有的奶牛群排序:右端点为第一关键字,递增;左端点为第二关键字,递减。

我们给序列上的每个数是当前公交车剩的奶牛个数。然后就是用线段树维护区间最小值,答案就加上当前奶牛群和对应区间的最小值的较小者,然后区间加。

即可。

最后,附上丑陋的代码... ...

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 20010 
#define K 50010 
#define lson pos<<1
#define rson pos<<1|1
using namespace std;
int minn[N<<2],tag[N<<2]; int c;
struct Node {int l,r,w;}a[K]; inline bool cmp(const Node &x,const Node &y) {return x.r==y.r?x.l>y.l:x.r<y.r;}
inline char nc() {static char *p1,*p2,buf[100000]; return (p1==p2)&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;}
int rd() {int x=0; char c=nc(); while(!isdigit(c)) c=nc(); while(isdigit(c)) x=(x<<3)+(x<<1)+(c^48),c=nc(); return x;}
inline void pushup(int pos) {minn[pos]=min(minn[lson],minn[rson]);}
inline void pushdown(int pos)
{
    if(!tag[pos]) return;
    tag[lson]+=tag[pos]; minn[lson]+=tag[pos];
    tag[rson]+=tag[pos]; minn[rson]+=tag[pos];
    tag[pos]=0;
}
void build(int l,int r,int pos)
{
    if(l==r) {minn[pos]=c; return;}
    int mid=(l+r)>>1;
    build(l,mid,lson); build(mid+1,r,rson);
    pushup(pos);
}
void update(int x,int y,int val,int l,int r,int pos)
{
    if(x<=l&&r<=y) {minn[pos]+=val; tag[pos]+=val; return;}
    int mid=(l+r)>>1; pushdown(pos);
    if(x<=mid) update(x,y,val,l,mid,lson);
    if(mid<y) update(x,y,val,mid+1,r,rson);
    pushup(pos);
}
int query(int x,int y,int l,int r,int pos)
{
    if(x<=l&&r<=y) return minn[pos];
    int mid=(l+r)>>1,ans=0x7f7f7f7f; pushdown(pos);
    if(x<=mid) ans=min(ans,query(x,y,l,mid,lson));
    if(mid<y) ans=min(ans,query(x,y,mid+1,r,rson));
    return ans;
}
int main()
{
    int n=rd(),l=rd(); c=rd(); for(int i=1;i<=n;i++)
    {
        a[i].l=rd(),a[i].r=rd(),a[i].w=rd(); a[i].r--;
    }
    int ans=0;
    sort(a+1,a+n+1,cmp); build(1,l,1);
    for(int i=1;i<=n;i++)
    {
        int temp=min(a[i].w,query(a[i].l,a[i].r,1,l,1));
        if(temp) ans+=temp,update(a[i].l,a[i].r,-temp,1,l,1);
    }
    printf("%d\n",ans);
    return 0;
}

小结:线段树是真的强啊... ...

转载于:https://www.cnblogs.com/ShuraK/p/9669663.html

题目描述 牛牛和她的朋友们正在玩一个有趣的游戏,他们需要构建一个有 $n$ 个节点的无向图,每个节点都有一个唯一的编号并且编号从 $1$ 到 $n$。他们需要从节点 $1$ 到节点 $n$ 找到一条最短路径,其中路径长度是经过的边权的和。为了让游戏更有趣,他们决定在图上添加一些额外的边,这些边的权值都是 $x$。他们想知道,如果他们添加的边数尽可能少,最短路径的长度最多会增加多少。 输入格式 第一行包含两个正整数 $n$ 和 $m$,表示节点数和边数。 接下来 $m$ 行,每行包含三个整数 $u_i,v_i,w_i$,表示一条无向边 $(u_i,v_i)$,权值为 $w_i$。 输出格式 输出一个整数,表示最短路径的长度最多会增加多少。 数据范围 $2 \leq n \leq 200$ $1 \leq m \leq n(n-1)/2$ $1 \leq w_i \leq 10^6$ 输入样例 #1: 4 4 1 2 2 2 3 3 3 4 4 4 1 5 输出样例 #1: 5 输入样例 #2: 4 3 1 2 1 2 3 2 3 4 3 输出样例 #2: 2 算法 (BFS+最短路) $O(n^3)$ 我们把问题转化一下,假设原图中没有添加边,所求的就是点 $1$ 到点 $n$ 的最短路,并且我们已经求出了这个最短路的长度 $dis$。 接下来我们从小到大枚举边权 $x$,每次将 $x$ 加入图中,然后再次求解点 $1$ 到点 $n$ 的最短路 $dis'$,那么增加的最短路长度就是 $dis'-dis$。 我们发现,每次加入一个边都需要重新求解最短路。如果我们使用 Dijkstra 算法的话,每次加入一条边需要 $O(m\log m)$ 的时间复杂度,总的时间复杂度就是 $O(m^2\log m)$,无法通过本题。因此我们需要使用更优秀的算法。 观察到 $n$ 的范围比较小,我们可以考虑使用 BFS 求解最短路。如果边权均为 $1$,那么 BFS 可以在 $O(m)$ 的时间复杂度内求解最短路。那么如果我们只是加入了一条边的话,我们可以将边权为 $x$ 的边看做 $x$ 条边的组合,每次加入该边时,我们就在原始图上添加 $x$ 条边,边权均为 $1$。这样,我们就可以使用一次 BFS 求解最短路了。 但是,我们不得不考虑加入多条边的情况。如果我们还是将边权为 $x$ 的边看做 $x$ 条边的组合,那么我们就需要加入 $x$ 条边,而不是一条边。这样,我们就不能使用 BFS 了。 但是,我们可以使用 Floyd 算法。事实上,我们每次加入边时,只有边权等于 $x$ 的边会发生变化。因此,如果我们枚举边权 $x$ 时,每次只需要将边权等于 $x$ 的边加入图中,然后使用 Floyd 算法重新计算最短路即可。由于 Floyd 算法的时间复杂度为 $O(n^3)$,因此总的时间复杂度为 $O(n^4)$。 时间复杂度 $O(n^4)$ 空间复杂度 $O(n^2)$ C++ 代码 注意点:Floyd算法计算任意两点之间的最短路径,只需要在之前的路径基础上加入新的边构成的新路径进行更新即可。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值