BZOJ1577 USACO 2009 Feb Gold 1.Fair Shuttle Solution

博客内容概述:该博客介绍了BZOJ1577 USACO 2009 February Gold Contest的1.Fair Shuttle问题。博主分享了初始朴素的费用流建模思路,但指出这种方法会导致超时。然后,博主提出了一种优化的解决方案,通过变量now和ans记录当前负载和答案,并按出发站点si对奶牛群进行排序。处理每个奶牛群时,博主使用大根堆和小根堆来维护到达站点ti,确保不超过车辆负载限制。这种方法在O(m log m)的时间复杂度内解决了问题。最后,博主提供了代码实现。
摘要由CSDN通过智能技术生成

题目大意:n个站点,有m群奶牛,第i群奶牛有mi只,要从si站点出发,直到ti站点下车。对于一群奶牛,可以不全部上车。同时在车上的奶牛数不能超过c,求最多能满足多少头奶牛的要求。


Sol:

一开始想到的是非常朴素的费用流,建模通过等式差分十分显然。不过这样会严重超时。

用两个变量now,ans分别记录当前负载,以及答案。

再维护每群奶牛目前剩下的数目num。

将奶牛群按照si从大到小排序,依次处理。

对于当前奶牛群i,我们找出还剩下的奶牛群j中tj<=si的奶牛群,并还原负载:now+=numj.

我们令当前奶牛群全部上车,不过有可能超出负载,那么我们就贪心的减小当前还剩下的ti最大的奶牛群,直到负载满足条件。在这个过程中,更新答案。

这样我们就在O(mlogm)的时间复杂度内解决了此题。


具体实现方面,分别维护大根堆和小根堆,维护ti.


Code:

#include <cstdio>
#include <cstring>
#include <cctype>
#include <iostream>
#include <algorithm>
using namespace std;

#define N 20010
#define M 50010
int n, m;
struct Interval {
	int l, r, num;
	Interval(int _l = 0, int _r = 0, int _num = 0):l(_l),r(_r),num(_num){}
	void r
题目描述 牛牛和她的朋友们正在玩一个有趣的游戏,他们需要构建一个有 $n$ 个节点的无向图,每个节点都有一个唯一的编号并且编号从 $1$ 到 $n$。他们需要从节点 $1$ 到节点 $n$ 找到一条最短路径,其中路径长度是经过的边权的和。为了让游戏更有趣,他们决定在图上添加一些额外的边,这些边的权值都是 $x$。他们想知道,如果他们添加的边数尽可能少,最短路径的长度最多会增加多少。 输入格式 第一行包含两个正整数 $n$ 和 $m$,表示节点数和边数。 接下来 $m$ 行,每行包含三个整数 $u_i,v_i,w_i$,表示一条无向边 $(u_i,v_i)$,权值为 $w_i$。 输出格式 输出一个整数,表示最短路径的长度最多会增加多少。 数据范围 $2 \leq n \leq 200$ $1 \leq m \leq n(n-1)/2$ $1 \leq w_i \leq 10^6$ 输入样例 #1: 4 4 1 2 2 2 3 3 3 4 4 4 1 5 输出样例 #1: 5 输入样例 #2: 4 3 1 2 1 2 3 2 3 4 3 输出样例 #2: 2 算法 (BFS+最短路) $O(n^3)$ 我们把问题转化一下,假设原图中没有添加边,所求的就是点 $1$ 到点 $n$ 的最短路,并且我们已经求出了这个最短路的长度 $dis$。 接下来我们从小到大枚举边权 $x$,每次将 $x$ 加入图中,然后再次求解点 $1$ 到点 $n$ 的最短路 $dis'$,那么增加的最短路长度就是 $dis'-dis$。 我们发现,每次加入一个边都需要重新求解最短路。如果我们使用 Dijkstra 算法的话,每次加入一条边需要 $O(m\log m)$ 的时间复杂度,总的时间复杂度就是 $O(m^2\log m)$,无法通过本题。因此我们需要使用更优秀的算法。 观察到 $n$ 的范围比较小,我们可以考虑使用 BFS 求解最短路。如果边权均为 $1$,那么 BFS 可以在 $O(m)$ 的时间复杂度内求解最短路。那么如果我们只是加入了一条边的话,我们可以将边权为 $x$ 的边看做 $x$ 条边的组合,每次加入该边时,我们就在原始图上添加 $x$ 条边,边权均为 $1$。这样,我们就可以使用一次 BFS 求解最短路了。 但是,我们不得不考虑加入多条边的情况。如果我们还是将边权为 $x$ 的边看做 $x$ 条边的组合,那么我们就需要加入 $x$ 条边,而不是一条边。这样,我们就不能使用 BFS 了。 但是,我们可以使用 Floyd 算法。事实上,我们每次加入边时,只有边权等于 $x$ 的边会发生变化。因此,如果我们枚举边权 $x$ 时,每次只需要将边权等于 $x$ 的边加入图中,然后使用 Floyd 算法重新计算最短路即可。由于 Floyd 算法的时间复杂度为 $O(n^3)$,因此总的时间复杂度为 $O(n^4)$。 时间复杂度 $O(n^4)$ 空间复杂度 $O(n^2)$ C++ 代码 注意点:Floyd算法计算任意两点之间的最短路径,只需要在之前的路径基础上加入新的边构成的新路径进行更新即可。
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值