[bzoj1500][NOI2005]维修数列_非旋转Treap

维修数列 bzoj-1500 NOI-2005

题目大意:给定n个数,m个操作,支持:在指定位置插入一段数;删除一个数;区间修改;区间翻转。查询:区间和;全局最大子序列。

注释:$1\le n_{max} \le 5\cdot 10^5$,$1\le m \le 2\cdot 10^4$。

想法:据说是... ...最GB的平衡树裸题,如果把这题切了,话说所有的平衡树都不怕了。

具体的,

插入和删除对于非旋转Treap来讲都是基本操作;

区间修改的话我们就先删除然后插入即可;

区间反转就打标记;

区间和就是单点维护子树和;

全局最大子序列的话像小白逛公园一样维护一下从左右开始的最长子序列。

最后,附上丑陋的代码... ...

#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define N 502333
#define MAXN 4002333
using namespace std;
char c;int v;
inline void read(int &x)
{
    x=0;c=getchar();v=1;
    while(c<'0'||c>'9')
    {
        if(c=='-')v=-1;
        c=getchar();
    }
    while(c>='0'&&c<='9')x=x*10+c-'0',c=getchar();
    x*=v;
}
int n,m,root;
struct Node
{
    int ls,rs,size,key,val,sum,maxx,lmax,rmax,f;
    bool turn;
}a[N];
struct par{int x,y;};
int q[MAXN],l=1,r,cnt,temp[N];
inline void clear(int x)
{
    a[x].ls=a[x].rs=a[x].size=a[x].key=a[x].val=0;
    a[x].maxx=a[x].lmax=a[x].rmax=a[x].turn=0;
    a[x].f=2333;
}
inline void update(int x)
{
    int ls=a[x].ls,rs=a[x].rs;
    a[x].size=1;a[x].maxx=a[x].sum=a[x].val;
    if(ls)a[x].size+=a[ls].size,a[x].sum+=a[ls].sum,a[x].maxx=max(a[x].maxx,a[ls].maxx);
    if(rs)a[x].size+=a[rs].size,a[x].sum+=a[rs].sum,a[x].maxx=max(a[x].maxx,a[rs].maxx);
    a[x].maxx=max(a[x].maxx,a[ls].rmax+a[x].val+a[rs].lmax);
    a[x].lmax=max(a[ls].lmax,a[ls].sum+a[x].val+a[rs].lmax);
    a[x].rmax=max(a[rs].rmax,a[rs].sum+a[x].val+a[ls].rmax);
}
inline void pushdown(int x)
{
    if(!x)return;
    int ls=a[x].ls,rs=a[x].rs;
    if(a[x].turn)
    {
        if(ls)
        {
            a[ls].turn^=1;
            swap(a[ls].lmax,a[ls].rmax);
        }
        if(rs)
        {
            a[rs].turn^=1;
            swap(a[rs].lmax,a[rs].rmax);
        }
        swap(a[x].ls,a[x].rs);
        a[x].turn=0;
    }
    ls=a[x].ls,rs=a[x].rs;
    if(a[x].f!=2333)
    {
        if(ls)
        {
            a[ls].f=a[ls].val=a[x].f;a[ls].sum=a[ls].size*a[ls].f;
            if(a[ls].f>0)a[ls].maxx=a[ls].lmax=a[ls].rmax=a[ls].sum;
            else a[ls].maxx=a[ls].f,a[ls].lmax=a[ls].rmax=0;
        }
        if(rs)
        {
            a[rs].f=a[rs].val=a[x].f;a[rs].sum=a[rs].size*a[rs].f;
            if(a[rs].f>0)a[rs].maxx=a[rs].lmax=a[rs].rmax=a[rs].sum;
            else a[rs].maxx=a[rs].f,a[rs].lmax=a[rs].rmax=0;
        }
        a[x].f=2333;
    }
}
int merge(int x,int y)
{
    if(!x||!y)return x|y;
    pushdown(x),pushdown(y);
    if(a[x].key>a[y].key)
    {
        a[x].rs=merge(a[x].rs,y);update(x);
        return x;
    }
    a[y].ls=merge(x,a[y].ls);update(y);
    return y;
}
par split(int x,int k)
{
    if(!k)return (par){0,x};
    pushdown(x);
    int ls=a[x].ls,rs=a[x].rs;
    if(k==a[ls].size)
    {
        a[x].ls=0;update(x);
        return (par){ls,x};
    }
    if(k==a[ls].size+1)
    {
        a[x].rs=0;update(x);
        return (par){x,rs};
    }
    if(k<a[ls].size)
    {
        par t=split(ls,k);
        a[x].ls=t.y;update(x);
        return (par){t.x,x};
    }
    par t=split(rs,k-a[ls].size-1);
    a[x].rs=t.x;update(x);
    return (par){x,t.y};
}
inline int makenew(int x)
{
    int p;
    if(l<=r)p=q[l++];
    else p=++cnt;
    a[p].size=1,a[p].maxx=a[p].sum=a[p].val=x;
    a[p].lmax=a[p].rmax=max(x,0);
    a[p].turn=0,a[p].f=2333;
    a[p].key=rand();
    return p;
}
int build(int L,int R)
{
    if(L==R)return makenew(temp[L]);
    int mid=(L+R)>>1;
    return merge(build(L,mid),build(mid+1,R));
}
void del(int x)
{
    if(!x)return;
    del(a[x].ls);
    del(a[x].rs);
    clear(x);
    q[++r]=x;
}
int main()
{
    read(n),read(m);
    for(int i=1;i<=n;i++)read(temp[i]);
    root=build(1,n);
    char flag[10];
    for(int x,num,val,j,i=1;i<=m;i++)
    {
        scanf("%s",flag);
        if(flag[0]=='I')
        {
            read(x);read(num);
            for(j=1;j<=num;j++)read(temp[j]);
            par t=split(root,x);
            root=merge(merge(t.x,build(1,num)),t.y);
        }
        else if(flag[0]=='D')
        {
            read(x);read(num);x--;
            par t1=split(root,x),t2=split(t1.y,num);
            del(t2.x);
            root=merge(t1.x,t2.y);
        }
        else if(flag[0]=='R')
        {
            read(x);read(num);x--;
            par t1=split(root,x),t2=split(t1.y,num);
            a[t2.x].turn^=1;swap(a[t2.x].lmax,a[t2.x].rmax);
            root=merge(t1.x,merge(t2.x,t2.y));
        }
        else if(flag[0]=='G')
        {
            read(x);read(num);x--;
            par t1=split(root,x),t2=split(t1.y,num);
            printf("%d\n",a[t2.x].sum);
            root=merge(t1.x,merge(t2.x,t2.y));
        }
        else if(flag[2]=='X')printf("%d\n",a[root].maxx);
        else 
        {
            read(x);read(num);read(val);x--;
            par t1=split(root,x),t2=split(t1.y,num);
            a[t2.x].f=a[t2.x].val=val;a[t2.x].sum=val*a[t2.x].size;
            if(val>0)a[t2.x].maxx=a[t2.x].lmax=a[t2.x].rmax=a[t2.x].sum;
            else a[t2.x].maxx=val,a[t2.x].lmax=a[t2.x].rmax=0;
            root=merge(t1.x,merge(t2.x,t2.y));
        }
    }
    return 0;
}

小结:裸题就是开心... ...

P.S.:非旋转Treap就是比splay优越!

转载于:https://www.cnblogs.com/ShuraK/p/9362652.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值