[2016北京集训试题6]魔法游戏-[博弈论-sg函数]

Description

Solution

首先,每个节点上的权值可以等价于该节点上有(它的权的二进制位数+1)个石子,每次可以拿若干个石子但不能不拿。

然后就发现这和NIM游戏很像,就计算sg函数em(然而我并不会推)

如果您恰好看到这篇博,又恰好有空的话,欢迎探讨~

Code

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
typedef unsigned long long ull;
int n,x,y;
int num[100010];
ull t;
struct G{int y,nxt;}g[200010];int h[100010],tot=0;
int dfs(int x,int fa)
{
    int c=num[x],d=0;
    for (int i=h[x];i;i=g[i].nxt)
        if (g[i].y!=fa) d^=dfs(g[i].y,x);
    return c-=(c<=d);
}
int main()
{
    while (scanf("%d",&n)!=EOF)
    {
        for (int i=1;i<=n;i++){scanf("%llu",&t);num[i]=(int)log2(t)+1;}
        memset(h,0,sizeof(h));tot=0;
        for (int i=1;i<n;i++)
        {
            scanf("%d%d",&x,&y);x++;y++;
            g[++tot]=G{y,h[x]};h[x]=tot;
            g[++tot]=G{x,h[y]};h[y]=tot;
        }
        dfs(1,0)?printf("Alice\n"):printf("Marisa\n");      
    }
}

 

转载于:https://www.cnblogs.com/coco-night/p/9690925.html

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值