关于快速沃尔什变换(FWT)的一些个人理解

定义

FWT是一种快速完成集合卷积运算的算法。

它可以用于求解类似 $C[i]=\sum\limits_{j⊗k=i}A[j]*B[k]$ 的问题

其中⊗代表位运算中的|,&,^的其中一种。

求解(正变换)

设F(A)是对于A的一种变换。

并且F(A)要求满足:      

               $F(A)*F(B)=F(A⊗B)$

                $k*F(A)=F(k*A)$   ②

               $F(A+B)=F(A)+F(B)$  (A,B长度相同)

 

鉴于FWT和FFT长得特别像(而且求解的问题也比较类似),我们可以借鉴一下FFT的思路,采用分治的想法。

首先先把多项式的长度用0补到2n,即多项式A为a0+a1x+a2x2+.....+a2n-1x2^n-1

我们可以将多项式A拆成A0和A1。A0为多项式下标二进制最高位为0的部分,A1即为多项式下标二进制最高位为1的部分。

则A=(A0,A1)。  (ps:此处的括号意为将A0,A1拼起来。)

 

我们猜测F(A)=(k1*F(A0)+k2*F(A1),k3*F(A0)+k4*F(A1))中当A的长度为1时,F(A)=A

对于②式证明如下:

 假设A的长度为2n

 由原式得(k1*F(A0)+k2*F(A1),k3*F(A0)+k4*F(A1))*k=

        (k1*F(k*A0)+k2*F(k*A1),k3*F(k*A0)+k4*F(k*A1))

 则若要证明k*F(A)=F(k*A),我们需要证明的是F(k*A')=k*F(A'),其中A'的长度为2n-1按照此方法递归直到A的长度为1,因为k*A=k*A,所以k*F(A)=F(k*A)。证毕。

对于③式证明如下:(其实和②式的证明一样的)

 假设A,B的长度为2n

 由原式得(k1*F(A0+B0)+k2*F(A1+B1),k3*F(A0+B0)+k4*F(A1+B1))=

(k1*F(A0)+k2*F(A1),k3*F(A0)+k4*F(A1))+(k1*F(B0)+k2*F(B1),k3*F(B0)+k4*F(B1)) 

 则若要证明F(A+B)=F(A)+F(B),需要条件F(A'+B')=F(A')+F(B'),其中A'的长度为2n-1照此方法递归,同理可证明。

  

如今我们证明了的正确性,以下计算是为了确保正确。

(以下计算以异或为例)

        F(C)=F(A)*F(B)

      C=AB→ (A0,A1)(B0,B1)=(A0B0+A1B1,A1B0+A0B1

可以得出  (以下我们以k1,k2为例)

  F(A)的前半部分                     F(B)的前半部分      F(C)的前半部分

           ↓                                                      ↓                        

 k1*F(A0)+k2*F(A1))*k1*F(B0)+k2*F(B1))

            =k1*F(A0B0+A1B1)+k2*F(A1B0+A0B1)

所以          k12F(A0B0)+k1k2*F(A0B1)+k1k2*F(A1B0)+k22F(A1B1)

            =k1*F(A0B0)+k2*F(A0B1)+k2*F(A1B0)+k1*F(A1B1)

                        可得k12=k1,k1k2=k2,k22=k1。

            解得k1,k2为(0,0)或(1,1)或(1,-1)

由于我们的操作必须可逆,所以排除掉(0,0),并且(k1,k2)(k3,k4)不相等。所以我们可以令k1=k2=k3=1,k4=-1。

   则逆变换的时候,k1=k2=k3=1/2,k4=-1/2(这个解一下方程就可以算出来了)。

 

如果是|或者&运算,将红色部分修改为:

  | :(A0,A1)(B0,B1)=(A0B0,A1B0+A0B1+A1B1

  & : (A0,A1)(B0,B1)=(A0B0+A1B0+A0B1,A1B1)

 

  以下代码都以异或为例

 

void fwt(int *a,int len)//xor
{
    for (int i=1;i<len;i<<=1)
        for (int j=0;j<len;j+=i*2)
            for (int k=0;k<i;k++)
            {
                int u=a[j+k],v=a[j+k+i];
                a[j+k]=u+v;a[j+k+i]=u-v+mod;
                if (a[j+k]>mod) a[j+k]-=mod;
                if (a[j+k+i]>mod) a[j+k+i]-=mod;
                // or:a[j+k+i]=u+v;
                // and:a[j+k]=u+v;
            }
}

  FWT逆变换代码(以异或为例)

void ufwt(int *a,int len)
{
    for (int i=1;i<len;i<<=1)
        for (int j=0;j<len;j+=i*2)
            for (int k=0;k<i;k++)
            {
                int x=a[j+k],y=a[j+k+i];
                a[k+j]=(x+y)*inv2%mod;
                a[j+k+i]=(x-y+mod)*inv2%mod;
            }
}

 

  其中的inv2为2的逆元。如果题目没有要求将答案除以某数,也可以写作:a[k+j]=(x+y)/2,a[k+j+i]=(x-y)/2

一个神神秘秘的问题

  学习FWT的时候我比较好奇一个问题。在正变换的时候我们先处理F(A0),F(A1)后处理F(A),那为什么我们在求逆变换的时候不需要先求F(A)的逆变换再处理F(A0),F(A1)的。。。

  请大佬不吝赐教。

 

本篇博客参考hy大佬的博客http://www.cnblogs.com/yoyoball/p/9260176.html。对于其一些我不太理解的地方加了证明和改动。如果有错误之处还请多多包涵。

 

 

 

 

 

 

 

 

 

 

  

 

 

转载于:https://www.cnblogs.com/coco-night/p/9376925.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值