Triangle, square, pentagonal, hexagonal, heptagonal, and octagonal numbers are all figurate (polygonal) numbers and are generated by the following formulae:
Triangle | P3,n=n(n+1)/2 | 1, 3, 6, 10, 15, ... | ||
Square | P4,n=n2 | 1, 4, 9, 16, 25, ... | ||
Pentagonal | P5,n=n(3n−1)/2 | 1, 5, 12, 22, 35, ... | ||
Hexagonal | P6,n=n(2n−1) | 1, 6, 15, 28, 45, ... | ||
Heptagonal | P7,n=n(5n−3)/2 | 1, 7, 18, 34, 55, ... | ||
Octagonal | P8,n=n(3n−2) | 1, 8, 21, 40, 65, ... |
The ordered set of three 4-digit numbers: 8128, 2882, 8281, has three interesting properties.
- The set is cyclic, in that the last two digits of each number is the first two digits of the next number (including the last number with the first).
- Each polygonal type: triangle (P3,127=8128), square (P4,91=8281), and pentagonal (P5,44=2882), is represented by a different number in the set.
- This is the only set of 4-digit numbers with this property.
Find the sum of the only ordered set of six cyclic 4-digit numbers for which each polygonal type: triangle, square, pentagonal, hexagonal, heptagonal, and octagonal, is represented by a different number in the set.
又暴力破解了一次ㄟ( ▔, ▔ )ㄏ
一開始没看清题意,我以为这些数依次是满足triangle, square, pentagonal, hexagonal, heptagonal, and octagonal。结果发现无解┑( ̄Д  ̄)┍
#include <iostream>
#include <string>
#include <vector>
#include <unordered_map>
#include <time.h>
using namespace std;
int triangle[100];
int pentagonal[10000];
int hextagonal[10000];
int heptagonal[10000];
int octagonal[10000];
int tri_count = 0;
void getTriangle()
{
int count = 0;
for (int i = 1; i <= 200; i++)
{
int num = i*(i + 1) / 2;
if (num >1000&&num<10000)
triangle[count++] = num;
}
tri_count = count;
}
bool isSqure(int n)
{
int i = sqrt(n);
if (i*i == n&&n>1000&&n<10000)
return true;
return false;
}
void getPentagonal()
{
for (int i = 1; i <= 200; i++)
{
int num = i*(3 * i - 1) / 2;
if (num > 1000 && num < 10000)
pentagonal[num] = 1;
}
}
bool isPentagonal(int n)
{
if (pentagonal[n] == 1)
return true;
return false;
}
void getHexagonal()
{
for (int i = 1; i <= 200; i++)
{
int num = i*(2 * i - 1);
if (num>1000 && num < 10000)
hextagonal[num] = 1;
}
}
bool isHexagonal(int n)
{
if (hextagonal[n] == 1)
return true;
return false;
}
void getHeptagonal()
{
for (int i = 1; i <= 200; i++)
{
int num = i*(5 * i - 3) / 2;
if (num > 1000 && num < 10000)
heptagonal[num] = 1;
}
}
bool isHeptagonal(int n)
{
if (heptagonal[n] == 1)
return true;
return false;
}
void getOctagonal()
{
for (int i = 1; i <= 200; i++)
{
int num = i*(3 * i - 2);
if (num > 1000 && num < 10000)
octagonal[num] = 1;
}
}
bool isOctagonal(int n)
{
if (octagonal[n] == 1)
return true;
return false;
}
bool(*figurate[5])(int) = { isSqure, isPentagonal, isHexagonal, isHeptagonal, isOctagonal };
vector<int> GetRandomSequence()
{
unordered_map<int, int>tab;
vector<int>res;
int num;
for (int i = 0; i < 5; i++)
{
do{
num = rand() % 5;
} while (tab.find(num) != tab.end());
tab.insert(make_pair(num, 1));
res.push_back(num);
}
return res;
}
int check()
{
int sum = 0;
srand((int)time(0));
vector<int>rs = GetRandomSequence();
for (int i = 0; i < tri_count; i++)
{
int a = triangle[i] / 100;
int b = triangle[i] % 100;
for (int s = 10; s <= 99; s++)
{
if ((*figurate[rs[0]])(b * 100 + s))
{
for (int p = 10; p <= 99; p++)
{
if ((*figurate[rs[1]])(s * 100 + p))
{
for (int hx = 10; hx <= 99; hx++)
{
if ((*figurate[rs[2]])(p * 100 + hx))
{
for (int hp = 10; hp <= 99; hp++)
{
if ((*figurate[rs[3]])(hx * 100 + hp))
{
if ((*figurate[rs[4]])(hp * 100 + a))
{
sum = triangle[i] + b * 100 + s + s * 100 + p + p * 100 + hx + hx * 100 + hp + hp * 100 + a;
return sum;
}
}
}
}
}
}
}
}
}
}
return -1;
}
int main()
{
memset(pentagonal, 0, sizeof(pentagonal));
memset(hextagonal, 0, sizeof(hextagonal));
memset(heptagonal, 0, sizeof(heptagonal));
memset(octagonal, 0, sizeof(octagonal));
getTriangle();
getPentagonal();
getHexagonal();
getHeptagonal();
getOctagonal();
int flag;
while (true)
{
flag = check();
if (flag != -1)
break;
}
cout << flag << endl;
system("pause");
return 0;
}
把那个随机生成全排列换成next_permutation也是能搞出来的。