参考博客:
https://www.cnblogs.com/ljh2000-jump/p/5869991.html
线性基的基本性质:原数组的异或值域等于线性基数组的值域
也就是,原数组能异或出来的值,线性基一样可以得到,如果我们求原数组异或值的性质,我们只需要在$lgn$个数中讨论
极大地降低了问题的复杂度
从中推导出的性质:线性基子集的异或和不为零,如果为零,那么肯定有个不应该加入线性基的数被加入。
插入:
bool insert(int x)//插入x
{
for(int i=63;i>=1;i--){
if(x&(1ll<<i)){
if(a[i]==0){
a[i]=x;//放入线性基,那么可以是插入的了
return 1;
}
else x^=a[i];//否则插入x^a[i],既然a[i]插入了,并且x^a[i]插入了,那么相当于x也插入了
}
}
return 0;
}
最大异或和:
for(int i=62;i>=0;i--) if((ans^p[i])>ans) ans=ans^p[i];//从线性基中得到最大值