线性基(就是秩,没必要专门学

前言

做济南A,发现并不会线性基,记下。

算法思想

用有限的几个数字表示出所有的数字,类似基向量的求解。但相对基向量有一些特殊的解释。这里只说一个可能注意不到的。
任意几个个数字异或不能得到0<-这就是正交性。

算法代码

	const int maxn = 1e3+5;
	long long nums[maxn];
	void add(int a){
		for(int i=63;i>=0;i--){
			if(a&nums[i]) {
				if(!nums[i]) {nums[i]=a;break;}//更新
				a^=nums[i];//检测是否能表示a,是否有遗漏
			}
		}
	}

这是最简单的线性基求法,如果全部插入,大约是64n的效率。
/
**
本来想结合高斯消元学一下,结果发现就是求秩,都会就没动笔,放着也碍事,发了。
***/

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 线性代数中的-零度定理是指对于一个矩阵A,其列空间和零空间的维度之和等于A的列数,即rank(A) + nullity(A) = 列数(A)。其中,矩阵A的列空间是由A的所有列所生成的向量空间,零空间则是指线性变换Ax=0的解向量所形成的向量空间。该定理在线性代数中具有重要意义,常常被用来解决矩阵的、行列式等问题。 ### 回答2: 线性代数中的-零度定理是指对于一个矩阵A的任一非零子矩阵B,其和零度(或者称为零空间的维度)的和等于A的列数。换句话说,加上零度就等于矩阵的列数。 具体来说,设A是一个m×n的矩阵,则矩阵A的为其行最简形式矩阵(也称为行最简阶梯形矩阵)中非零行的行数,而零度则为矩阵A的零空间的维度或者线性相关的自由变量的个数。 -零度定理是线性代数中的一个非常重要的定理,它可以帮助我们判断矩阵的相关性和线性无关性。根据-零度定理,对于任意一个方阵A,其等于其列向量的最大线性无关组的元素个数,而零度则为A的阶数减去。 举个例子来说,如果一个矩阵A有5列,其中有3列可以通过线性组合得到,而另外2列与前面的3列线性无关,那么根据-零度定理,矩阵A的为3,零度为2,而和零度的和等于5,也就是矩阵A的列数。 -零度定理为我们提供了计算和分析矩阵的有效方法,它在各个领域中都有广泛的应用,包括物理、经济、计算机等等。了解-零度定理可以帮助我们更好地理解线性代数中的相关概念和性质,从而应用于实际问题的求解和研究。 ### 回答3: 线性代数-零度定理是一个关于矩阵与零空间维度之间关系的定理。定理表明,对于任意一个矩阵A,它的和它的零空间维度之和等于它的列数。更具体地讲,如果A是一个m行n列的矩阵,那么它的r加上它的零空间维度null(A)等于n。 这个定理的意义在于它揭示了矩阵的和其零空间之间的一个重要关系。是矩阵列向量空间的维度,即矩阵中线性无关的列向量的最大个数。而零空间则是矩阵对应的线性变换中使得其结果为零向量的输入向量的集合,也称为矩阵的核。 根据-零度定理,我们可以得出一些结论。首先,一个矩阵的加上它的零空间维度等于它的列数,这意味着矩阵的和零空间的维度之和等于矩阵的列数。其次,一个矩阵的零空间维度等于它的列数减去它的,这表示矩阵的零空间的维度是可由决定的。 -零度定理在线性代数中起着重要的作用,它帮助我们理解和分析矩阵的性质和变换。通过计算矩阵的和零空间维度,我们可以获得关于矩阵列空间和零空间的信息,进而推断出矩阵的各种特性和运算。这个定理在许多实际问题中都有应用,如线性方程组的解、数据降维和图像处理等领域。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值