压缩感知
第15章 压缩感知的基础理论
15.1 压缩感知的基本概念
- 基本问题:如何突破Shannon抽样定理?(奈奎斯特率)
- 传统抽样流程
- 传统抽样方法的弊端{采集数据长度大、计算了不必要的小系数、大系数位置的编码过程计算量大}
- 基本定义
- 压缩感知(CS)针对稀疏信号,但Shannon定理只需要知道信号带宽无需其他先验
- CS将信号的采集和压缩过程合并,减少了数据存储压力
- k稀疏、测量系统\(y=\Phi x\),给定测量系统,求解最优x(P443-444)
- 稀疏性的存在:1)信号在时空域上的稀疏性;2)信号在(正交)变换域上的稀疏性
- 使用二范数的问题;零范数的NP-Hard问题;
- CS理论的三个要求:
- 信号x在时空域、变换域是稀疏的
- 测量矩阵要满足一定的性质
- 高效的恢复算法
由3.引出的CS的核心问题
- 信号的稀疏表示
- 对k稀疏信号,最小测量次数M的求解
- 测量矩阵的性质与设计
- 信号恢复算法
- 如何计算y
- CS的应用
CS的发展
- 开篇论文:[Can06a], [Don06]
- 网站:Compressive Sensing Resources | http://dsp.rice.edu/CS/
15.2 预备知识
- 矩阵的零空间(测量系统方程的解空间),又称Kernel
- 矩阵的具有常数\(\lambda\)的k阶零空间性质
- 矩阵的spark,spark和秩的关系
- 向量范数(l1范数的重要性)
- 凸优化与线性规划(单纯形法与内点法)