中国剩余定理

中国剩余定理说明:假设整数 m 1, m 2, ... , m n两两互质,则对任意的整数: a 1, a 2, ... , a n,方程组
有解,并且通解可以用如下方式构造得到:
是整数 m 1, m 2, ... , m n的乘积,并设
是除了 m i以外的 n- 1个整数的乘积。
的数论倒数(
意义下的逆元)
方程组
的通解形式为
在模
的意义下,方程组
只有一个解:
证明 :
从假设可知,对任何
,由于
,所以
这说明存在整数
使得
这样的
叫做
的数论倒数。考察乘积
可知:
所以
满足:
这说明
就是方程组
的一个解。
另外,假设
都是方程组
的解,那么:
两两互质,这说明
整除
. 所以方程组
的任何两个解之间必然相差
的整数倍。而另一方面,
是一个解,同时所有形式为:
的整数也是方程组
的解。所以方程组所有的解的集合就是:
(从公式逆推)
 
poj1006生理周期:
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int a[4],st,M,cnt;
int main()
{
    M=23*28*33;
    while(scanf("%d",&a[1])!=-1)
    {
    cnt++;
    scanf("%d%d%d",&a[2],&a[3],&st);
    if(a[1]==-1)break;
    int ans=(5544*a[1]+14421*a[2]+1288*a[3]-st+M)%M;
    if(!ans)ans=M;
    printf("Case %d: the next triple peak occurs in %d days.\n",cnt,ans);
    }
    return 0;
}

转载于:https://www.cnblogs.com/lxykk/p/8308641.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值