- 博客(17)
- 收藏
- 关注
转载 darknet(yolov2)移植到caffe框架
yolov2到caffe的移植主要分两个步骤:一、cfg,weights转换为prototxt,caffemodel1.下载源码:git clone https://github.com/marvis/pytorch-caffe-darknet-convert.git2.安装pytorch,使用conda指令:(需要有torch模块)conda install pytorch torch...
2018-08-13 16:35:00 564
转载 关于vs2013中包含目录,以及库目录配置相对路径的问题
记住一句话即可!相对路径: 是相对于你的工程的*.vcxproj的路径!!!转载于:https://www.cnblogs.com/yyxf1413/p/9447478.html
2018-08-09 10:41:00 695
转载 Import error: no module named cv2 错误解决方法
Windows:将opencv安装目录下的cv2.pyd拷贝到Python安装目录里Lib中site-packagesLinux: (1)将opencv安装目录下的cv2.so拷贝到Python安装目录里Lib中site-packages (2) 尝试输入以下指令:sudo apt-get install python-opencv转载于:...
2017-12-12 16:29:00 213
转载 caffe进行finetune时出现"shapeequals(proto) shape mismatch (reshape not set)"的解决办法
声明:加载的caffemodel会根据你的net.prototxt文件里的各个layer的name来进行参数赋值。错误:[Caffe]: Check failed: ShapeEquals(proto) shape mismatch (reshape not set)原因:从caffemodel加载进来的参数和你的输入或者输出不匹配。示例:比如对于全连接层fc6,caffem...
2017-11-29 11:17:00 198
转载 windows下caffe如何单独编译proto文件
利用protoc.exe即可编译。 在protoc.exe当前文件夹下打开cmd,输入命令如下:pushd %~dp0echo "copying .proto and generated .cc and .h"protoc caffe.proto --cpp_out=.\ copy caffe.proto ..\caffe\src\caffe\pro...
2017-11-22 15:50:00 176
转载 Faster R-CNN利用新的网络结构来训练
前言最近利用Faster R-CNN训练数据,使用ZF模型,效果无法有效提高。就想尝试对ZF的网络结构进行改造,记录下具体操作。一、更改网络,训练初始化模型这里为了方便,我们假设更换的网络名为LeNet。首先,需要先训练在Faster R-CNN中用来初始化网络的模型:LeNet.caffemodel。这里比较简单,直接用完整的LeNet去训练一部分数据(VOC200...
2017-11-13 17:18:00 175
转载 浅述python中range()函数的用法
函数用法说明:用法一:range(m)输出: [0,1,...,m-1](从0到m-1的一个list,不包括m)示例:用法二:range(m,n),m<n输出:[m,m+1,..,n-1](从m到n-1的一个list,不包括n)示例:用法三:range(m,n,k)输出:[m,m+k,m+2k,....](从m开始,间隔为k...
2017-10-25 16:19:00 502
转载 Yolo+Windows 配置(详细版)
一、配置环境 VS2013+显卡GtX1080ti+CUDA7.5+Opencv3.1.0+pthread pthread:ftp://sourceware.org/pub/pthreads-win32/pthreads-w32-2-9-1-release.zip YOLO:http://pjreddie.com/darknet/yolo Darknet:http...
2017-10-09 16:13:00 465
转载 c++调用python函数时,使用PyArray_SimpleNewFromData(nd, dims, typenum, data)函数时出现内存错误的问题...
示例程序:intmain(intargc,char*argv[]){PyObject *pName, *pModule, *pDict, *pFunc, *pValue, *pArgs,*pXVec,*c, *xarr1;int i;float fArray[5] = {0,1,2,3,4};npy_intp m[1] = {5};// Initial...
2017-09-04 16:32:00 3326
转载 调用opencv时,使用Egien工具出现“error C2061: 语法错误: 标识符“Matrix””和“error C2653: “Eigen”:不是类或命名空间名称”该如何解决?...
这个问题主要是由于头文件的编译问题引起的。1.如果没有Eigen工具的,先下载Egien工具并配置。Egien可以去主页下载。配置时,打开你的c++工程属性页:配置属性->C/C++->常规->附加包含目录,然后添加你下载的Eigen的文件夹的路径即可。我的配置是:2.配置好的,在编译时出现这种问题,主要是由于头文件的编译顺序问题。如果按照下面这种顺...
2017-03-10 11:30:00 827
转载 创建新的C++工程来调用Caffe对图片进行识别
前段时间一直在跑Caffe训练数据。之前用训练好的caffemodel对图片进行分类都是用的命令行指令,于是就想着自己新建一个工程来调用caffe,结合classification的代码来对图片进行分类。上网查阅了很多资料,最详细的一篇就是:http://blog.csdn.net/qq_14845119/article/details/52541622#reply。一、步骤描述...
2017-02-08 21:49:00 100
转载 如何批量获取指定路径下的图片的完整路径
昨天创建了新的c++工程调用caffe,用训练好的caffemodel对图片进行分类。后来想批量的处理图片,因此去学习了下c++如何批量获取指定路径下的图片的完成路径。代码如下:#include <io.h> #include <fstream> #include <string> #include <vector&...
2017-02-08 20:21:00 406
转载 用训练好的caffemodel对单个/批量图片进行分类
一、单个图片进行分类 这个比较简单,在*.bat文件中输入以下代码:@echo offset BIN_DIR=D:\caffe\caffe-windows\Build\x64\Releaseset DEPLOY_DIR=D:\gaokun\caffe_train_test_toolset CAFFEMODEL_DIR=D:\ChineseCharacterdat...
2017-01-22 10:44:00 319
转载 浅析梯度下降法(有待改进)
上段时间学习caffe,caffe的solver优化方法中涉及到梯度下降法。当时对梯度下降法的概念和原理都很模糊,就专门去学习了下,现在把自己的理解记录下来,一方面加深印象,一方面也方便随时查阅。如果有理解错误的地方,希望看到的予以指正,谢谢。 一、什么是梯度?梯度和方向导数的关系是什么?(简述,需要详细了解的可以自行搜索) 方向导数:对于一个函数f,在其定义域内存在...
2017-01-16 22:51:00 132
转载 caffe小问题汇总(持续更新)
PS:所有问题均在caffe-windows下产生1、为什么AlexNet中,InnerProduct_Layer(fc8)层的输出可以直接作为Accuracy_Layer层的输出?答:首先,我们要搞清楚,全连接层的输出是什么。全连接层的操作其实也是卷积操作,只不过要求卷积核的尺寸与输入进来的FeatureMap相同,因此全连接层输出的向量大小为1*1。其次,为什么全连接层输...
2017-01-12 15:28:00 116
转载 浅述python中argsort()函数的用法
由于想使用python用训练好的caffemodel来对很多图片进行批处理分类,学习过程中,碰到了argsort函数,因此去查了相关文献,也自己在python环境下进行了测试,大概了解了其相关的用处,为了怕自己后面又忘了,就写下来权当加深理解了。(ps:我也是python小白,理解可能比较浅显)1.先定义一个array数据1 import numpy as np2...
2017-01-05 20:48:00 4515
转载 caffe源码阅读(一)convert_imageset.cpp注释
PS:本系列为本人初步学习caffe所记,由于理解尚浅,其中多有不足之处和错误之处,有待改正。一、实现方法首先,将文件名与它对应的标签用std::pair存储起来,其中first存储文件名,second存储标签,其次,数据通过Datum datum来存储,将图像与标签转为Datum需要通过函数ReadImageToDatum()来完成,再次,Datum数据又...
2016-11-26 16:50:00 116
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人