高斯消元法【模板】

高斯消元法,消成行阶梯型矩阵。

下面两种消元法的时间复杂度都是 $O(n^3)$.

#include<bits/stdc++.h>
using namespace std;

const int maxn = 100+10;
typedef double Matrix[maxn][maxn];

//要求系数矩阵可逆
//这里的A是增广矩阵,即A[i][n] 是第i个方程右边的常数bi
//运行结束后A[i][n] 是第i个未知数的值
void gauss_elimination(Matrix A, int n)
{
    int i, j, k, r;

    for(i = 0;i < n;i++)  //消元过程
    {
        //选绝对值一行r并与第i行交换
        r = i;
        for(j = i+1; j < n;j++)
            if(fabs(A[j][i] > fabs(A[r][i]))) r = j;
        if(r != i) for(j = 0;j <= n;j++)  swap(A[r][j], A[i][j]);

        //与第i+1~n行进行消元
        for(k = i+1; k < n;k++)
        {
            double f = A[k][i] / A[i][i];
            for(int j = i;j <= n;j++)  A[k][j] -= f * A[i][j];      //已经是阶梯型矩阵了,所以从i开始
        }
    }

    //回代过程
    for(i = n-1;i >= 0;i--)
    {
        for(j = i+1; j < n;j++)
            A[i][n] -= A[j][n] * A[i][j];
        A[i][n] /= A[i][i];
    }
}

int n;
Matrix M;

int main()
{
    while(scanf("%d", &n) == 1)
    {
        for(int i = 0;i < n;i++)
            for(int j = 0;j <= n;j++)
                scanf("%lf", &M[i][j]);
        gauss_elimination(M, n);

        for(int i = 0;i < n;i++)  printf("%.8f\n", M[i][n]);
    }
}

 

高斯-约当消元法,消成对角矩阵,从而省略掉回代过程。

 

#include<bits/stdc++.h>
using namespace std;

const double eps = 1e-8;
const int maxn = 100+10;
typedef double Matrix[maxn][maxn];

//结果为A[i][n]/A[i][i]
void gauss_jordan(Matrix A, int n)
{
    int i, j, k, r;
    for(i = 0;i < n;i++)
    {
         //选绝对值一行r并与第i行交换
        r = i;
        for(j = i+1;j < n;j++)
            if(fabs(A[j][i]) > fabs(A[r][i]))  r = j;
        if(fabs(A[r][i]) < eps)  continue;      //放弃这一行,直接处理下一行
        if(r != i)  for(j = 0;j <= n;j++)  swap(A[r][j], A[i][j]);

        //与除第i行外的其他行进行消元
        for(k = 0;k < n;k++)  if(k != i)
            for(j = n;j >= i;j--)  A[k][j] -= A[k][i] / A[i][i] * A[i][j];
    }
}


int n;
Matrix M;

int main()
{
    while(scanf("%d", &n) == 1)
    {
        for(int i = 0;i < n;i++)
            for(int j = 0;j <= n;j++)
                scanf("%lf", &M[i][j]);
        gauss_jordan(M, n);

        for(int i = 0;i < n;i++)  printf("%.8f\n", M[i][n] / M[i][i]);
    }
}

 

Code From:

《算法竞赛入门经典训练指南》——刘汝佳、陈锋编著

转载于:https://www.cnblogs.com/lfri/p/11526479.html

高斯消元法是一种线性代数中求解线性方程组的常用方法,它通过一系列的行变换将增广矩阵转化为上三角矩阵,从而求出方程组的解。 下面我们来详细介绍高斯消元法的步骤: 1. 将增广矩阵写成一个矩阵形式:$$\left[\begin{array}{cccc|c}a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\\vdots & \vdots & \ddots & \vdots & \vdots \\a_{n1} & a_{n2} & \cdots & a_{nn} & b_n \\\end{array}\right]$$ 2. 选择第一列系数最大的行作为第一步的主元素所在的行,将该行移到第一行。 3. 通过消元操作将第一列的其他元素变成零。具体地,对于第 $i$ 行,我们将其乘以一个系数 $m_i$ 加到第一行上,使得第一行的第 $i$ 个元素变成零。需要注意的是,系数 $m_i$ 的取值为:$$m_i = -\frac{a_{i1}}{a_{11}}$$ 4. 将第二列系数最大的行作为第二步的主元素所在的行,将该行移到第二行。 5. 通过消元操作将第二列的其他元素变成零。具体地,对于第 $i$ 行,我们将其乘以一个系数 $m_i$ 加到第二行上,使得第二行的第 $i$ 个元素变成零。需要注意的是,系数 $m_i$ 的取值为:$$m_i = -\frac{a_{i2}}{a_{22}}$$ 6. 重复上述步骤,直到将增广矩阵转化为上三角矩阵。此时,方程组的解可以通过回代得到。 7. 回代过程:从最后一行开始,依次求解每个未知量。具体地,对于第 $i$ 个未知量,我们先将第 $i$ 行的解代入第 $i$ 个方程中,然后依次代入已知的第 $i+1$ 到第 $n$ 个未知量的解,得到第 $i$ 个未知量的解。 下面是高斯消元法的代码实现: ```c++ const double eps = 1e-8; int gauss(vector<vector<double>>& a, vector<double>& b) { int n = a.size(); int m = a[0].size() - 1; vector<int> p(n); for (int i = 0; i < n; i++) { p[i] = i; } for (int k = 0; k < m; k++) { int pivot = k; for (int i = k; i < n; i++) { if (abs(a[i][k]) > abs(a[pivot][k])) { pivot = i; } } swap(a[pivot], a[k]); swap(b[pivot], b[k]); if (abs(a[k][k]) < eps) { return -1; } for (int i = k + 1; i < n; i++) { double f = a[i][k] / a[k][k]; b[i] -= f * b[k]; for (int j = k; j < m; j++) { a[i][j] -= f * a[k][j]; } } } vector<double> x(m); for (int k = m - 1; k >= 0; k--) { x[k] = b[k]; for (int i = k + 1; i < m; i++) { x[k] -= a[k][i] * x[i]; } x[k] /= a[k][k]; } return 0; } ``` 其中,输入参数为一个 $n \times (m+1)$ 的增广矩阵 $A$ 和一个长度为 $n$ 的向量 $b$,输出为 $0$ 或者 $-1$,表示方程组有唯一解或者无解,解存储在长度为 $m$ 的向量 $x$ 中。 需要注意的是,为了防止精度误差,我们在进行消元操作时,如果某个数的绝对值小于一个极小值 $\epsilon$,则将其视为零。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值