[问题2014S10] 复旦高等代数II(13级)每周一题(第十教学周)

[问题2014S10]  设 \(A,B\) 为 \(n\) 阶方阵, 证明: \(AB\) 与 \(BA\) 相似的充分必要条件是 \[\mathrm{rank}\big((AB)^i\big)=\mathrm{rank}\big((BA)^i\big),\, i=1,2,\cdots,n-1.\]

  (1) 本题是复旦高代教材 P172 习题 6 的推广, 即若 \(A,B\) 中有一个是非异阵, 则 \(AB\) 与 \(BA\) 相似.

(2) 设 \[A=\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix},\, B=\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix},\] 则 \(AB=B\) 不相似于 \(BA=0\), 这是因为 \(\mathrm{rank}(AB)=1\neq 0=\mathrm{rank}(BA)\).

转载于:https://www.cnblogs.com/torsor/p/3690832.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值