循环矩阵的性质及其应用

本文探讨了循环矩阵的概念,给出了循环矩阵的定义、性质和应用。通过基础循环矩阵$J$,展示了循环矩阵的多项式表示,并指出循环矩阵在复数域上可对角化,具有特定的特征值和特征向量。文章还讨论了循环矩阵的特征值、行列式、秩和非异性等特性,并证明了非异循环矩阵在矩阵乘法下形成Abel群。此外,提出了循环矩阵在全排列问题中的应用,证明了存在全排列使得对应行列式不为零。文章进一步拓展了这一理论,提及其在不同域上的推广可能性。
摘要由CSDN通过智能技术生成

$\S 1$ 循环矩阵的定义及多项式表示

设 $K$ 为数域. 任取 $K$ 中 $n$ 个数 $a_1,a_2,\cdots,a_n$,下列矩阵称为 $K$ 上的 $n$ 阶循环矩阵:

$$A=\begin{pmatrix} a_1 & a_2 & a_3 & \cdots & a_n \\ a_n & a_1 & a_2 & \cdots & a_{n-1} \\ a_{n-1} & a_n & a_1 & \cdots & a_{n-2} \\ \vdots & \vdots & \vdots & & \vdots \\ a_2 & a_3 & a_4 & \cdots & a_1 \\ \end{pmatrix}.\qquad(1)$$

取 $a_2=1$, $a_1=a_3=\cdots=a_n=0$, 则可得到如下基础循环矩阵:

$$J=\begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ 1 & 0 & 0 & \cdots & 0 \\ \end{pmatrix}.\qquad(2)$$

由复旦高代白皮书的例 2.1 可知, $J^k=\begin{pmatrix} 0 & I_{n-k} \\ I_k & 0 \\ \end{pmatrix}\,(1\leq k\leq n)$, 从而$$A=a_1I_n+a_2J+a_3J^2+\cdots+a_nJ^{n-1}.\qquad(3)$$ 令 $g(x)=a_1+a_2x+a_3x^2+\cdots+a_nx^{n-1}$, 则 $g(x)$ 是 $K$ 上次数不超过 $n-1$ 的多项式, 使得 $A=g(J)$, 这就是循环矩阵关于基础循环矩阵的多项式表示. 记 $C_n(K)$ 为 $K$ 上所有 $n$ 阶循环矩阵构成的集合, 容易验证: 在矩阵的加法和数乘下, $C_n(K)$ 是一个 $n$ 维线性空间, 其一组基为 $\{I_n,J,\cdots,J^{n-1}\}$. 再任取循环矩阵 $B=h(J)$, 其中 $h(x)$ 是 $K$ 上次数不超过 $n-1$ 的多项式, 则利用多项式乘法和 $J^n=I_n$ 可知 $AB=g(J)h(J)$ 仍然是一个循环矩阵 (参考白皮书的例 2.12). 因此, $C_n(K)$ 是 $K$ 上的 $n$ 维交换代数, 同构于 $K[x]/(x^n-1)$.

$\S 2$  循环矩阵的性质

下面将依次研究循环矩阵的特征值、特征向量和可对角化等性质, 由此可得循环矩阵的行列式、秩和非异性等信息. 这些内容包含在白皮书的例 2.52, 例 6.9, 例 6.32 和例 6.39 的推论中.

容易计算出基础循环矩阵 $J$ 的特征多项式 $|\lambda I_n-J|=\lambda^n-1$, 从而 $J$ 在复数域中有 $n$ 个不同的特征值, 即 $n$ 次单位根 $\omega_k=\cos\dfrac{2k\pi}{n}+

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值