循环矩阵的性质及其应用

本文探讨了循环矩阵的概念,给出了循环矩阵的定义、性质和应用。通过基础循环矩阵$J$,展示了循环矩阵的多项式表示,并指出循环矩阵在复数域上可对角化,具有特定的特征值和特征向量。文章还讨论了循环矩阵的特征值、行列式、秩和非异性等特性,并证明了非异循环矩阵在矩阵乘法下形成Abel群。此外,提出了循环矩阵在全排列问题中的应用,证明了存在全排列使得对应行列式不为零。文章进一步拓展了这一理论,提及其在不同域上的推广可能性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

$\S 1$ 循环矩阵的定义及多项式表示

设 $K$ 为数域. 任取 $K$ 中 $n$ 个数 $a_1,a_2,\cdots,a_n$,下列矩阵称为 $K$ 上的 $n$ 阶循环矩阵:

$$A=\begin{pmatrix} a_1 & a_2 & a_3 & \cdots & a_n \\ a_n & a_1 & a_2 & \cdots & a_{n-1} \\ a_{n-1} & a_n & a_1 & \cdots & a_{n-2} \\ \vdots & \vdots & \vdots & & \vdots \\ a_2 & a_3 & a_4 & \cdots & a_1 \\ \end{pmatrix}.\qquad(1)$$

取 $a_2=1$, $a_1=a_3=\cdots=a_n=0$, 则可得到如下基础循环矩阵:

$$J=\begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ 1 & 0 & 0 & \cdots & 0 \\ \end{pmatrix}.\qquad(2)$$

由复旦高代白皮书的例 2.1 可知, $J^k=\begin{pmatrix} 0 & I_{n-k} \\ I_k & 0 \\ \end{pmatrix}\,(1\leq k\leq n)$, 从而$$A=a_1I_n+a_2J+a_3J^2+\cdots+a_nJ^{n-1}.\qquad(3)$$ 令 $g(x)=a_1+a_2x+a_3x^2+\cdots+a_nx^{n-1}$, 则 $g(x)$ 是 $K$ 上次数不超过 $n-1$ 的多项式, 使得 $A=g(J)$, 这就是循环矩阵关于基础循环矩阵的多项式表示. 记 $C_n(K)$ 为 $K$ 上所有 $n$ 阶循环矩阵构成的集合, 容易验证: 在矩阵的加法和数乘下, $C_n(K)$ 是一个 $n$ 维线性空间, 其一组基为 $\{I_n,J,\cdots,J^{n-1}\}$. 再任取循环矩阵 $B=h(J)$, 其中 $h(x)$ 是 $K$ 上次数不超过 $n-1$ 的多项式, 则利用多项式乘法和 $J^n=I_n$ 可知 $AB=g(J)h(J)$ 仍然是一个循环矩阵 (参考白皮书的例 2.12). 因此, $C_n(K)$ 是 $K$ 上的 $n$ 维交换代数, 同构于 $K[x]/(x^n-1)$.

$\S 2$  循环矩阵的性质

下面将依次研究循环矩阵的特征值、特征向量和可对角化等性质, 由此可得循环矩阵的行列式、秩和非异性等信息. 这些内容包含在白皮书的例 2.52, 例 6.9, 例 6.32 和例 6.39 的推论中.

容易计算出基础循环矩阵 $J$ 的特征多项式 $|\lambda I_n-J|=\lambda^n-1$, 从而 $J$ 在复数域中有 $n$ 个不同的特征值, 即 $n$ 次单位根 $\omega_k=\cos\dfrac{2k\pi}{n}+i\sin\dfrac{2k\pi}{n}\,(0\leq k\leq n-1)$, 因此 $J$ 在复数域上可对角化. 经计算可知, 特征值 $\omega_k$ 的特征向量是 $\alpha_k=(1,\omega_k,\omega_k^2,\cdots,\omega_k^{n-1})'$. 将这些特征向量按列分块拼成一个矩阵:  $$P=\begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega_1 & \omega_2 & \cdots & \omega_{n-1} \\ 1 & \omega_1^2 & \omega_2^2 & \cdots & \omega_{n-1}^2 \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & \omega_1^{n-1} & \omega_2^{n-1} & \cdots & \omega_{n-1}^{n-1} \\ \end{pmatrix},\quad(4)$$ 则由 Vander Monde 行列式或特征值特征向量的性质可知, $P$ 是非异阵, 并且满足 $$P^{-1}JP=\mathrm{diag}\{1,\omega_1,\omega_2,\cdots,\omega_{n-1}\},\quad(5)$$ 从而 $$P^{-1}AP=P^{-1}g(J)P=g(P^{-1}JP)=\mathrm{diag}\{g(1),g(\omega_1),g(\omega_2),\cdots,g(\omega_{n-1})\}.\quad(6)$$ 由 (6) 式可知, 循环矩阵 $A=g(J)$ 的特征值为 $g(1),g(\omega_1),g(\omega_2),\cdots,g(\omega_{n-1})$, 对应的特征向量是 $\alpha_0,\alpha_1,\alpha_2,\cdots,\alpha_{n-1}$, 并且 $A$ 可对角化. 特别地, $|A|=g(1)g(\omega_1)g(\omega_2)\cdots g(\omega_{n-1})$, $r(A)=\sharp\{0\leq k\leq n-1\mid g(\omega_k)\neq 0\}$, $A$ 非异当且仅当 $g(\omega_k)\neq 0\,(0\leq k\leq n-1)$, 也即当且仅当 $(\lambda^n-1,g(\lambda))=1$.

定理 1  $n$ 阶复循环矩阵全体 $C_n(\mathbb{C})$ 与 $n$ 阶复对角矩阵全体 $D_n(\mathbb{C})$ 之间存在一个自然的代数同构 $\xi$.

证明  $n$ 阶复对角矩阵全体在矩阵的加法、数乘和乘法下成为复数域上的代数. 我们通过 (6) 式来定义映射 $\xi$, 即 $\xi: C_n(\mathbb{C})\to D_n(\mathbb{C})$ 定义为 $\xi(A)=P^{-1}AP=\mathrm{diag}\{g(1),g(\omega_1),g(\omega_2),\cdots,g(\omega_{n-1})\}$. 容易验证 $\xi$ 保持矩阵的加法、数乘和乘法, 从而是一个代数同态. 对任一 $\Lambda=\mathrm{diag}\{\lambda_0,\lambda_1,\cdots,\lambda_{n-1}\}$, 利用 Lagrange 插值公式可知, 存在次数不超过 $n-1$ 的多项式 $h(\lambda)$, 使得 $h(\omega_k)=\lambda_k\,(0\leq k\leq n-1)$. 令 $B=h(J)$, 则 $\xi(B)=\Lambda$, 即 $\xi$ 是满射. 又 $\dim C_n(\mathbb{C})=\dim D_n(\mathbb{C})=n$, 从而 $\xi$ 是一个线性同构, 从而是代数同构.  $\Box$

推论 2  $n$ 阶复矩阵 $B$ 可对角化的充要条件是 $B$ 相似于某个循环矩阵.

证明  由定理 1 中的同构 $\xi$ 是通过相似变换实现的即得结论.  $\Box$

推论 3  设 $A\in C_n(K)$, 则 $A^*$ 也是循环矩阵.

证法一  由 (6) 式可知 $$P^*A^*(P^*)^{-1}=(P^{-1}AP)^*=\mathrm{diag}\{g(1),g(\omega_1),g(\omega_2),\cdots,g(\omega_{n-1})\}^*$$ 仍为对角阵. 注意到 $P^*=|P|P^{-1}$, 故上述等式可化为 $$P^{-1}A^*P=(P^{-1}AP)^*=\mathrm{diag}\{g(1),g(\omega_1),g(\omega_2),\cdots,g(\omega_{n-1})\}^*.$$ 因此由定理 1 的结论, $A^*=\xi^{-1}\bigg(\xi(A)^*\bigg)$ 也是循环矩阵.

证法二  由白皮书的例 6.62 可知, 存在多项式 $h(\lambda)\in K[\lambda]$, 使得 $A^*=h(A)$. 设 $A=g(J)$, 则 $A^*=h(A)=h(g(J))$ 仍为 $J$ 的多项式, 从而是循环矩阵.  $\Box$

推论 4  若 $A\in C_n(K)$ 是非异阵, 则 $A^{-1}$ 也是循环矩阵.

证法一  由定理 1 的结论, $A^{-1}=\xi^{-1}\bigg(\xi(A)^{-1}\bigg)$ 也是循环矩阵.

证法二  由 Cayley-Hamilton 定理可知, 存在多项式 $h(\lambda)\in K[\lambda]$, 使得 $A^{-1}=h(A)$ (参考白皮书的例 6.61). 设 $A=g(J)$, 则 $A^{-1}=h(A)=h(g(J))$ 仍为 $J$ 的多项式, 从而是循环矩阵.

证法三  设 $A=g(J)$, 则由 $A$ 非异可知 $(\lambda^n-1,g(\lambda))=1$. 由互素多项式的性质可知, 存在 $u(\lambda),v(\lambda)$, 使得 $(\lambda^n-1)u(\lambda)+g(\lambda)v(\lambda)=1$. 令 $\lambda=J$, 代入上式可得 $g(J)v(J)=I_n$, 从而 $A^{-1}=v(J)$ 也是循环矩阵.

证法四  由 $A^{-1}=\dfrac{1}{|A|}A^*$ 以及推论 3 即得结论.  $\Box$

推论 5  $K$ 上的 $n$ 阶非异循环矩阵全体 $GC_n(K)$ 在矩阵乘法下成为一个 Abel 群.

推论 6  设 $A$ 为 $n$ 阶复循环矩阵, $f(z)$ 是收敛半径等于 $+\infty$ 的复幂级数, 则 $f(A)$ 也是循环矩阵.

证法一  注意到 $f(P^{-1}AP)=P^{-1}f(A)P$, 从而 $f(A)=\xi^{-1}\bigg(f(\xi(A))\bigg)$ 也是循环矩阵.

证法二  由 15 级高代 II 每周一题第 15 题可知, 存在多项式 $h(z)$, 使得 $f(A)=h(A)$ 也是循环矩阵.

证法三  设 $f(z)=\sum\limits_{i=0}^\infty a_iz^i$, $f_p(z)=\sum\limits_{i=0}^p a_iz^i$ 为 $f(z)$ 的部分和多项式. 设 $A=a_1I_n+a_2J+a_3J^2+\cdots+a_nJ^{n-1}$, 则 $f_p(A)=b^{(p)}_1I_n+b^{(p)}_2J+b^{(p)}_3J^2+\cdots+b^{(p)}_nJ^{n-1}$. 由于矩阵序列 $\lim\limits_{p\to\infty}f_p(A)$ 收敛到 $f(A)$, 故每个数列 $\lim\limits_{p\to\infty}b^{(p)}_i$ 都收敛. 若设 $\lim\limits_{p\to\infty}b^{(p)}_i=b_i\,(1\leq i\leq n)$, 则 $f(A)=\lim\limits_{p\to\infty}f_p(A)=b_1I_n+b_2J+b_3J^2+\cdots+b_nJ^{n-1}$ 仍为循环矩阵.  $\Box$

$\S 3$  循环矩阵的应用

下面我们给出循环矩阵的一个应用.

命题 7  设有 $K$ 中 $n^2\,(n\geq 2)$ 个不同的数, 则存在一个全排列, 记为 $a_1,\cdots,a_{n^2}$, 使得 $$\begin{vmatrix} a_1 & a_2 & \cdots & a_n \\ a_{n+1} & a_{n+2} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n^2-n+1} & a_{n^2-n+2} & \cdots & a_{n^2} \\ \end{vmatrix}\neq 0.$$

证明  对 $n$ 进行归纳. $n=2$ 时, 先取到 $a_1,a_2$, 使得 $a_1+a_2\neq 0$, 从而 $\begin{vmatrix} a_1 & a_2 \\ a_2 & a_1 \\ \end{vmatrix}=(a_1-a_2)(a_1+a_2)\neq 0$, 于是 $B=\{(a_1,a_2),(a_2,a_1)\}$ 是 $K^2$ 的一组基. 注意到 $(a_3,a_4)\neq 0$, 故由基扩张定理, 必可从基 $B$ 中选取一个基向量, 不妨设为 $(a_1,a_2)$, 使得 $\{(a_1,a_2),(a_3,a_4)\}$ 成为 $K^2$ 的一组基, 因此 $\begin{vmatrix} a_1 & a_2 \\ a_3 & a_4 \\ \end{vmatrix}\neq 0$. 设 $n-1$ 时结论成立, 现证 $n$ 的情形.

证法一  先取到 $a_1,a_2,\cdots,a_n$, 使得 $a_1+a_2\omega_k+\cdots+a_n\omega_k^{n-1}\neq 0$ 对 $0\leq k\leq n-1$ 都成立. 这一定能做到, 比如先选定 $a_2,\cdots,a_n$, 则不满足上述条件的 $a_1$ 最多只有 $n$ 个, 从而可取到满足上述条件的 $a_1$. 由循环矩阵的性质可知, (1) 式中的循环矩阵 $A$ 是非异阵, 特别地, $A$ 的 $n$ 个行向量 $\{\beta_1,\beta_2,\cdots,\beta_n\}$ 是 $K^n$ 的一组基. 由归纳假设, 可从剩下 $n^2-n$ 个数中选出 $(n-1)^2$ 个数的全排列, 使得 $$\begin{vmatrix} a_{n+2} & \cdots & a_{2n} \\ \vdots & & \vdots \\ a_{n^2-n+2} & \cdots & a_{n^2} \\ \end{vmatrix}\neq 0,$$ 后面随便选取 $a_{n+1},\cdots,a_{n^2-n+1}$, 均可使 $n-1$ 个行向量 $(a_{n+1},a_{n+2},\cdots,a_{2n})$, $\cdots$, $(a_{n^2-n+1},a_{n^2-n+2},\cdots,a_{n^2})$ 线性无关 (参考复旦高代教材的习题 3.4.9). 因此由基扩张定理, 必可从基 $\{\beta_1,\beta_2,\cdots,\beta_n\}$ 中选出一个基向量, 不妨设为 $\beta_1$, 使得 $\{(a_1,a_2,\cdots,a_n)$, $(a_{n+1},a_{n+2},\cdots,a_{2n})$, $\cdots$, $(a_{n^2-n+1},a_{n^2-n+2},\cdots,a_{n^2})\}$ 构成 $K^n$ 的一组基, 从而结论得证.

证法二  用反证法, 设对 $n^2$ 个数的所有全排列, 对应的行列式都等于零, 我们来推出矛盾. 先取到 $a_1,a_2,\cdots,a_n$, 使得 $a_1+a_2+\cdots+a_n\neq 0$, 再由归纳假设, 不妨设取到的行列式中, $a_1$ 的代数余子式 $A_1\neq 0$. 设其余元素 $a_i$ 的代数余子式为 $A_i\,(2\leq i\leq n)$, 因此 $a_1A_1+a_2A_2+\cdots+a_nA_n=0$. 在取到的行列式中, 对换第一行的 $a_1$ 与 $a_i\,(2\leq i\leq n)$, 其余 $n^2-2$ 个元素保持不变, 则有 $a_iA_1+\cdots+a_1A_i+\cdots+a_nA_n=0$. 由此可得 $(a_1-a_i)(A_1-A_i)=0$, 但 $a_1\neq a_i$, 从而 $A_1=A_i\,(2\leq i\leq n)$. 最后, $0=a_1A_1+a_2A_2+\cdots+a_nA_n=(a_1+a_2+\cdots+a_n)A_1\neq 0$, 矛盾.  $\Box$

  命题 7 的证法一是构造性的, 利用这一证法可以给出满足条件的全排列的总个数的一个粗略估计. 命题 7 的证法二由复旦数学学院 16 级本科生朱民哲提供.

本文的主要结论还可以推广到特征零的域或者特征 $p>0$ 的域 (要求 $p\nmid n$) 及其分裂域或代数闭包上. 另外, 白皮书第二章的解答题 13 还给出了 $b-$循环矩阵的推广. 有兴趣的读者可以自行学习和验证这些结论.

转载于:https://www.cnblogs.com/torsor/p/8848641.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值