[问题2014A07] 设 \(A\) 是有理数域 \(\mathbb{Q}\) 上的 4 阶方阵, \(\alpha_1,\alpha_2,\alpha_3,\alpha_4\) 是 \(\mathbb{Q}\) 上的 4 维列向量, 满足: \[ A\alpha_1=\alpha_2,\,\,A\alpha_2=\alpha_3,\,\,A\alpha_3=\alpha_4,\,\,A\alpha_4=-\alpha_1-\alpha_2-\alpha_3-\alpha_4.\] 证明: 若 \(\alpha_1\neq 0\), 则 \(\{\alpha_1,\alpha_2,\alpha_3,\alpha_4\}\) 是有理数域 \(\mathbb{Q}\) 上的 4 维列向量空间 \(\mathbb{Q}^4\) 的一组基.
转载于:https://www.cnblogs.com/torsor/p/4083368.html