LA 小、杂、乱题合辑

${\Large 1.}$(来自丘维声『高等代数』(上)$P_{189,194}$)

$(1).$ 设$A,B$分别是数域${\mathbb F}$上$n\times n,m\times n$矩阵.

证明: 如果$I_n-AB$可逆, 那么$I_m-BA$也可逆; 并求出$(I_m-BA)^{-1}$.

$(2).$ 设$A,B,D$都是数域${\mathbb F}$上$n$级矩阵, 其中$A,D$可逆, 且$B^TA^{-1}B+D^{-1}$也可逆. 证明:

$$(A+BDB^T)^{-1}=A^{-1}-A^{-1}B(B^TA^{-1}B+D^{-1})^{-1}B^TA^{-1}$$

 

${\bf 解:}$ $(1).$设法找到$m$级矩阵$X,\ s.t.\ (I_m-BA)(I_m+X)=I_m\ \Rightarrow\ -BA+X-BAX=0\ \Rightarrow X-BAX=BA$.

令$X=BYA$, 其中$Y$是待定的$n$级矩阵. 代入上式, 得

$$BYA-BABYA=BA\ \ 即\ \ B(Y-ABY)A=BA$$

如果能找到$Y,\ \ s.t.\ Y-ABY=I_n$, 那么上式成立. 由于$Y-ABY=I_n\ \Leftrightarrow \ (I_n-AB)Y=I_n$,而已知条件$I_n-AB$可逆, 故

$Y=(I_n-AB)^{-1}$. 由此受到启发, 有

\begin{align*}&(I_m-BA)[I_m+B(I_n-AB)^{-1}A]\\ =&I_m+B(I_n-AB)^{-1}A-BA-BAB(I_n-AB)^{-1}A\\
=&I_m-BA+B[(I_n-AB)^{-1}-AB(I_n-AB)^{-1}]A\\ =&I_m-BA+B[(I_n-AB)AB(I_n-AB)^{-1}]A\\
=&I_m-BA+BI_nA\\ =&I_m\end{align*}因此$I_m-BA$可逆, 并且

$$(I_m-BA)^{-1}=I_m+B(I_n-AB)^{-1}A.$$

$(2).$ 事实上,

\[{(A + BD{B^T})^{ - 1}} = {[A(I + {A^{ - 1}}BD{B^T})]^{ - 1}} = {(I + {A^{ - 1}}BD{B^T})^{ - 1}}{A^{ - 1}} = {[I - ({A^{ - 1}}BD)( - {B^T})]^{ - 1}}{A^{ - 1}}\]

套用$(1).$的结论可得

\begin{align*}{(A + BD{B^T})^{ - 1}}=&{[I - ({A^{ - 1}}BD)( - {B^T})]^{ - 1}}{A^{ - 1}}\\ ^{(1).}= &{[I + ({A^{ - 1}}BD){(I - ( - {B^T})({A^{ - 1}}BD))^{ - 1}}( - {B^T})]^{ - 1}}{A^{ - 1}}\\ =& {[I - ({A^{ - 1}}B){({D^{ - 1}})^{ - 1}}{(I + {B^T}{A^{ - 1}}BD)^{ - 1}}{B^T}]^{ - 1}}{A^{ - 1}}\\ =& {[I - {A^{ - 1}}B{[(I + {B^T}{A^{ - 1}}BD){D^{ - 1}}]^{ - 1}}{B^T}]^{ - 1}}{A^{ - 1}}\\ =&A^{-1}-A^{-1}B(B^TA^{-1}B+D^{-1})^{-1}B^TA^{-1}\end{align*}


 


 

${\Large 2.}$ 两个经典的行列式, 前者取自曾熊的博客; 后者来自张贤科『高等代数学』(第二版) $P_{61-62}$.

\[求\ \ \ \ D_1=\det \left( {\begin{array}{*{20}{c}}1&{\cos {\theta _1}}&{\cos 2{\theta _1}}& \cdots &{\cos \left( {n - 1} \right){\theta _1}}\\1&{\cos {\theta _2}}&{\cos 2{\theta _2}}& \cdots &{\cos \left( {n - 1} \right){\theta _2}}\\\vdots & \vdots & \vdots &{}& \vdots \\1&{\cos {\theta _n}}&{\cos 2{\theta _n}}& \cdots &{\cos \left( {n - 1} \right){\theta _n}}\end{array}} \right),\ \ \ D_2=\det \left( {\begin{array}{*{20}{c}}{\sin {\theta _1}}&{\sin 2{\theta _1}}& \cdots &{\sin {n}{\theta _1}}\\{\sin {\theta _2}}&{\sin 2{\theta _2}}& \cdots &{\sin {n}{\theta _2}}\\\vdots & \vdots & \ddots & \vdots \\{\sin {\theta _n}}&{\sin 2{\theta _n}}& \cdots &{\sin {n}{\theta _n}}\end{array}} \right).\]

 ${\bf 解:}$ 记${\varepsilon _k} = \cos {\theta _k} + i\sin {\theta _k}$, 则$\cos l{\theta _k} = \frac{{\varepsilon _k^l + \bar \varepsilon _k^l}}{2},\ \sin l{\theta _k} = \frac{{\varepsilon _k^l - \bar \varepsilon _k^l}}{2i},\ {\varepsilon _k}{{\bar \varepsilon }_k} = 1,$

\begin{align*}D_1 &= \left| {\begin{array}{*{20}{c}}1&{\cos {\theta _1}}&{\cos 2{\theta _1}}& \cdots &{\cos \left( {n - 1} \right){\theta _1}}\\1&{\cos {\theta _2}}&{\cos 2{\theta _2}}& \cdots &{\cos \left( {n - 1} \right){\theta _2}}\\\vdots & \vdots & \vdots &{}& \vdots \\1&{\cos {\theta _n}}&{\cos 2{\theta _n}}& \cdots &{\cos \left( {n - 1} \right){\theta _n}}\end{array}} \right| = \frac{1}{{{2^{n - 1}}}}\left| {\begin{array}{*{20}{c}}1&{{\varepsilon _1} + {{\bar \varepsilon }_1}}&{\varepsilon _1^2 + \bar \varepsilon _1^2}& \cdots &{\varepsilon _1^{n - 1} + \bar \varepsilon _1^{n - 1}}\\1&{{\varepsilon _2} + {{\bar \varepsilon }_2}}&{\varepsilon _2^2 + \bar \varepsilon _2^2}& \cdots &{\varepsilon _2^{n - 1} + \bar \varepsilon _2^{n - 1}}\\\vdots & \vdots & \vdots &{}& \vdots \\1&{{\varepsilon _n} + {{\bar \varepsilon }_n}}&{\varepsilon _n^2 + \bar \varepsilon _n^2}& \cdots &{\varepsilon _n^{n - 1} + \bar \varepsilon _n^{n - 1}}\end{array}} \right|\\&= \frac{1}{{{2^{n - 1}}}}\left| {\begin{array}{*{20}{c}}1&{{\varepsilon _1} + {{\bar \varepsilon }_1}}&{{{\left( {{\varepsilon _1} + {{\bar \varepsilon }_1}} \right)}^2}}& \cdots &{{{\left( {{\varepsilon _1} + {{\bar \varepsilon }_1}} \right)}^{n - 1}}}\\1&{{\varepsilon _2} + {{\bar \varepsilon }_2}}&{{{\left( {{\varepsilon _2} + {{\bar \varepsilon }_2}} \right)}^2}}& \cdots &{{{\left( {{\varepsilon _2} + {{\bar \varepsilon }_2}} \right)}^{n - 1}}}\\\vdots & \vdots & \vdots &{}& \vdots \\1&{{\varepsilon _n} + {{\bar \varepsilon }_n}}&{{{\left( {{\varepsilon _n} + {{\bar \varepsilon }_n}} \right)}^2}}& \cdots &{{{\left( {{\varepsilon _n} + {{\bar \varepsilon }_n}} \right)}^{n - 1}}}\end{array}} \right| = \frac{1}{{{2^{n - 1}}}}\prod\limits_{1 \le j < i \le n} {\left( {{\varepsilon _i} + {{\bar \varepsilon }_i} - {\varepsilon _j} - {{\bar \varepsilon }_j}} \right)} \\&= \frac{1}{{{2^{n - 1}}}} \times {2^{\frac{{n\left( {n - 1} \right)}}{2}}}\prod\limits_{1 \le j < i \le n} {\left( {\cos {\theta _i} - \cos {\theta _j}} \right)}  = {2^{\frac{{\left( {n - 1} \right)\left( {n - 2} \right)}}{2}}}\prod\limits_{1 \le j < i \le n} {\left( {\cos {\theta _i} - \cos {\theta _j}} \right)} ;\\
注 意\ \  \ \ \ \ &\phantom{=}\varepsilon _k^{n - 1} + \varepsilon _k^{n - 2}{\bar \varepsilon  _1} + \varepsilon _k^{n - 3}{\bar \varepsilon  _k}^2 \cdots  + \varepsilon _k^2\bar \varepsilon  _k^{n - 3} + \varepsilon _k^{}\bar \varepsilon  _k^{n - 1} + \bar \varepsilon  _k^{n - 1} \\
&= \varepsilon _k^{n - 1} + \varepsilon _k^{n - 3} + \varepsilon _k^{n - 5} \cdots  + \bar \varepsilon  _k^{n - 5} + \bar \varepsilon  _k^{n - 3} + \bar \varepsilon  _k^{n - 1} \\
&= (\varepsilon _k^{n - 1} + \bar \varepsilon  _k^{n - 1}) + (\varepsilon _k^{n - 3} + \bar \varepsilon  _k^{n - 3}) + (\varepsilon _k^{n - 5} + \bar \varepsilon  _k^{n - 5}) +  \cdots , \ \ \ 故\\
D_2 &=\left| {\begin{array}{*{20}{c}}
{\sin {\theta _1}}&{\sin 2{\theta _1}}& \cdots &{\sin {n}{\theta _1}}\\
{\sin {\theta _2}}&{\sin 2{\theta _2}}& \cdots &{\sin {n}{\theta _2}}\\
\vdots & \vdots & \ddots & \vdots \\
{\sin {\theta _n}}&{\sin 2{\theta _n}}& \cdots &{\sin {n}{\theta _n}}
\end{array}} \right| =
\frac{1}{{{(2i)^{n}}}}\left| {\begin{array}{*{20}{c}}
{{\varepsilon _1} - {{\bar \varepsilon }_1}}&{\varepsilon _1^2 - \bar \varepsilon _1^2}& \cdots &{\varepsilon _1^{n} - \bar \varepsilon _1^{n}}\\
{{\varepsilon _2} - {{\bar \varepsilon }_2}}&{\varepsilon _2^2 - \bar \varepsilon _2^2}& \cdots &{\varepsilon _2^{n} - \bar \varepsilon _2^{n}}\\
\vdots & \vdots &\ddots & \vdots \\
{{\varepsilon _n} - {{\bar \varepsilon }_n}}&{\varepsilon _n^2 - \bar \varepsilon _n^2}& \cdots &{\varepsilon _n^{n} - \bar \varepsilon _n^{n}}
\end{array}} \right|\\
&= \frac{({\varepsilon _1} - {\bar \varepsilon  _1})({\varepsilon _2} - {\bar \varepsilon  _2}) \cdots ({\varepsilon _n} - {\bar \varepsilon  _n})}{{{(2i)^{n}}}}\left| {\begin{array}{*{20}{c}}
1&{{\varepsilon _1} + {{\bar \varepsilon }_1}}& \cdots &\varepsilon _1^{n - 1} + \varepsilon _1^{n - 2}{\bar \varepsilon  _1} +  \cdots  + \varepsilon _1^{}\bar \varepsilon  _1^{n - 1} + \bar \varepsilon  _1^{n - 1} \\
1&{{\varepsilon _2} + {{\bar \varepsilon }_2}}& \cdots &\varepsilon _2^{n - 1} + \varepsilon _2^{n - 2}{\bar \varepsilon  _2} +  \cdots  + \varepsilon _2^{}\bar \varepsilon  _2^{n - 1} + \bar \varepsilon  _2^{n - 1}\\
\vdots & \vdots &\ddots& \vdots \\
1&{{\varepsilon _n} + {{\bar \varepsilon }_n}}& \cdots &\varepsilon _n^{n - 1} + \varepsilon _n^{n - 2}{\bar \varepsilon  _1} +  \cdots  + \varepsilon _n^{}\bar \varepsilon  _n^{n - 1} + \bar \varepsilon  _n^{n - 1}
\end{array}} \right| \\
&= \frac{({\varepsilon _1} - {\bar \varepsilon  _1})({\varepsilon _2} - {\bar \varepsilon  _2}) \cdots ({\varepsilon _n} - {\bar \varepsilon  _n})}{{{(2i)^{n}}}}
\left|{\begin{array}{*{20}{c}}
1&{{\varepsilon _1} + {{\bar \varepsilon }_1}}&{{{\left( {{\varepsilon _1} + {{\bar \varepsilon }_1}} \right)}^2}}& \cdots &{{{\left( {{\varepsilon _1} + {{\bar \varepsilon }_1}} \right)}^{n - 1}}}\\
1&{{\varepsilon _2} + {{\bar \varepsilon }_2}}&{{{\left( {{\varepsilon _2} + {{\bar \varepsilon }_2}} \right)}^2}}& \cdots &{{{\left( {{\varepsilon _2} + {{\bar \varepsilon }_2}} \right)}^{n - 1}}}\\
1&{{\varepsilon _3} + {{\bar \varepsilon }_3}}&{{{\left( {{\varepsilon _3} + {{\bar \varepsilon }_3}} \right)}^2}}& \cdots &{{{\left( {{\varepsilon _3} + {{\bar \varepsilon }_3}} \right)}^{n - 1}}}\\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1&{{\varepsilon _n} + {{\bar \varepsilon }_n}}&{{{\left( {{\varepsilon _n} + {{\bar \varepsilon }_n}} \right)}^2}}& \cdots &{{{\left( {{\varepsilon _n} + {{\bar \varepsilon }_n}} \right)}^{n - 1}}}
\end{array}} \right| \\
&= \frac{({\varepsilon _1} - {\bar \varepsilon  _1})({\varepsilon _2} - {\bar \varepsilon  _2}) \cdots ({\varepsilon _n} - {\bar \varepsilon  _n})}{{{(2i)^{n}}}}\prod\limits_{1 \le j < i \le n} {\left( {{\varepsilon _i} + {{\bar \varepsilon }_i} - {\varepsilon _j} - {{\bar \varepsilon }_j}} \right)} \\&=\sin{\theta _1} \ldots \sin{\theta _n}\prod\limits_{1 \le j < i \le n}{2(\cos{\theta_i}-\cos{\theta_j})}\\&=2^{\frac{n(n-1)}{2}}\sin{\theta _1} \ldots \sin{\theta _n}\prod\limits_{1 \le j < i \le n}{(\cos{\theta_i}-\cos{\theta_j})} .\end{align*}

转载于:https://www.cnblogs.com/poorich/p/4263556.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
完整版:https://download.csdn.net/download/qq_27595745/89522468 【课程大纲】 1-1 什么是java 1-2 认识java语言 1-3 java平台的体系结构 1-4 java SE环境安装和配置 2-1 java程序简介 2-2 计算机中的程序 2-3 java程序 2-4 java类库组织结构和文档 2-5 java虚拟机简介 2-6 java的垃圾回收器 2-7 java上机练习 3-1 java语言基础入门 3-2 数据的分类 3-3 标识符、关键字和常量 3-4 运算符 3-5 表达式 3-6 顺序结构和选择结构 3-7 循环语句 3-8 跳转语句 3-9 MyEclipse工具介绍 3-10 java基础知识章节练习 4-1 一维数组 4-2 数组应用 4-3 多维数组 4-4 排序算法 4-5 增强for循环 4-6 数组和排序算法章节练习 5-0 抽象和封装 5-1 面向过程的设计思想 5-2 面向对象的设计思想 5-3 抽象 5-4 封装 5-5 属性 5-6 方法的定义 5-7 this关键字 5-8 javaBean 5-9 包 package 5-10 抽象和封装章节练习 6-0 继承和多态 6-1 继承 6-2 object类 6-3 多态 6-4 访问修饰符 6-5 static修饰符 6-6 final修饰符 6-7 abstract修饰符 6-8 接口 6-9 继承和多态 章节练习 7-1 面向对象的分析与设计简介 7-2 对象模型建立 7-3 类之间的关系 7-4 软件的可维护与复用设计原则 7-5 面向对象的设计与分析 章节练习 8-1 内部类与包装器 8-2 对象包装器 8-3 装箱和拆箱 8-4 练习题 9-1 常用类介绍 9-2 StringBuffer和String Builder类 9-3 Rintime类的使用 9-4 日期类简介 9-5 java程序国际化的实现 9-6 Random类和Math类 9-7 枚举 9-8 练习题 10-1 java异常处理 10-2 认识异常 10-3 使用try和catch捕获异常 10-4 使用throw和throws引发异常 10-5 finally关键字 10-6 getMessage和printStackTrace方法 10-7 异常分类 10-8 自定义异常类 10-9 练习题 11-1 Java集合框架和泛型机制 11-2 Collection接口 11-3 Set接口实现类 11-4 List接口实现类 11-5 Map接口 11-6 Collections类 11-7 泛型概述 11-8 练习题 12-1 多线程 12-2 线程的生命周期 12-3 线程的调度和优先级 12-4 线程的同步 12-5 集合类的同步问题 12-6 用Timer类调度任务 12-7 练习题 13-1 Java IO 13-2 Java IO原理 13-3 流类的结构 13-4 文件流 13-5 缓冲流 13-6 转换流 13-7 数据流 13-8 打印流 13-9 对象流 13-10 随机存取文件流 13-11 zip文件流 13-12 练习题 14-1 图形用户界面设计 14-2 事件处理机制 14-3 AWT常用组件 14-4 swing简介 14-5 可视化开发swing组件 14-6 声音的播放和处理 14-7 2D图形的绘制 14-8 练习题 15-1 反射 15-2 使用Java反射机制 15-3 反射与动态代理 15-4 练习题 16-1 Java标注 16-2 JDK内置的基本标注类型 16-3 自定义标注类型 16-4 对标注进行标注 16-5 利用反射获取标注信息 16-6 练习题 17-1 顶目实战1-单机版五子棋游戏 17-2 总体设计 17-3 代码实现 17-4 程序的运行与发布 17-5 手动生成可执行JAR文件 17-6 练习题 18-1 Java数据库编程 18-2 JDBC类和接口 18-3 JDBC操作SQL 18-4 JDBC基本示例 18-5 JDBC应用示例 18-6 练习题 19-1 。。。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值