You are given N round clocks.
Every clock has M hands, and these hands can point to positions 1, 2, 3, ..., P (yes, these represent numbers around each face). The clocks are represented by the matrix A consisting of N rows and M columns of integers. The first row represents the hands of the first clock, and so on.
For example, you are given matrix A consisting of five rows and two columns, and P = 4:
A[0][0] = 1 A[0][1] = 2 A[1][0] = 2 A[1][1] = 4 A[2][0] = 4 A[2][1] = 3 A[3][0] = 2 A[3][1] = 3 A[4][0] = 1 A[4][1] = 3
You can rotate the clocks to obtain several clocks that look identical. For example, if you rotate the third, fourth and fifth clocks you can obtain the following clocks:
After rotation, you have four pairs of clocks that look the same: (1, 3), (1, 4), (2, 5) and (3, 4).
Write a function:
int solution(int **A, int N, int M, int P);
that, given a zero-indexed matrix A consisting of N rows and M columns of integers and integer P, returns the maximal number of pairs of clocks that can look the same after rotation.
For example, given the following array A and P = 4:
A[0][0] = 1 A[0][1] = 2 A[1][0] = 2 A[1][1] = 4 A[2][0] = 4 A[2][1] = 3 A[3][0] = 2 A[3][1] = 3 A[4][0] = 1 A[4][1] = 3
the function should return 4, as explained above.
Assume that:
- N is an integer within the range [1..500];
- M is an integer within the range [1..500];
- P is an integer within the range [1..1,000,000,000];
- each element of matrix A is an integer within the range [1..P];
- the elements of each row of matrix A are all distinct.
Complexity:
- expected worst-case time complexity is O(N*M*log(M)+N*log(N));
- expected worst-case space complexity is O(N*M).