《机器学习》第一周 一元回归法 | 模型和代价函数,梯度下降

课程地址:https://www.coursera.org/learn/machine-learning/lecture/8SpIM/gradient-descent

 此篇博文是我在聆听以上课程的笔记,欢迎交流分享。

 

一 Model and Cost Function 模型及代价函数

1 Model Representation 模型表示

  首先,教授介绍了一下课程中将会用到的符号和意义:

 

 

 

 

 

 

 

 

 

 

m:训练样本的数目

x:特征量

y:目标变量

(x,y):一个训练样本

(x^(i),y^(i)):i不是指数,而是指第i行的样本

 

Univariate linear regression:一元线性回归

hθ(x)=θ0+θ1*x

 

 2 Cost Function 代价函数

整体目标函数 --> 代价函数(平方误差函数,平方误差代价函数)

 

 

 

 

二 Gradient Descent 梯度下降

   梯度下降算法可以将代价函数j最小化。梯度函数是一种很常用的算法,它不仅被用在线性回归上,也被广泛地应用于机器学习领域中的众多领域之中。

 下图是代价函数J中解决线性回归问题的问题概述:

我们希望通过改变theta参数的值来最小化代价函数。

这里,我们考虑有两个参数的情况,我们可以考虑到一个三维图形,两条坐标分别表示theta0和theta1。

梯度下降要做的事,就是从某个起始theta对值开始,寻找最快的下降方向往下走,在路途上也不断地寻找最快下降的方向更改路线,最后到达一个局部最低点

 

可以看到,如果起始点稍有偏差,那么我们可能会得到一个非常不同的局部最优解,这也是梯度下降的一个特点。

 

我们从上图中获得了梯度下降的直观感受,接下来让我们看看梯度下降的定义:

 

分析一下梯度下降定义公式的一些细节:

我们用“:=”来表示赋值。注意,如果我们写作“=”,表达的意识并不是赋值,而是判断为真的说明,比如a=b,就是断言a的值是等于b的。

α在这里是一个数字,被称为学习效率(learning rate),在梯度下降算法中,它控制了我们下山时会卖出多大的步子。因此如果α比较大,那我们用大步子下山,如果它比较小,我们就迈着很小的小碎步下山。

 

在公式中,有一个很微妙的问题。在梯度下降中,我们要同时更新theta0和theta1,而不是先后更新。如果先更新了theta0,再更新theta1就会造成theta1的值出错。

 

三 Gradient Descent Intuition 梯度下降的客观事实

首先,教授向我们介绍了一下倒数和偏导的概念。教授为了解释明白,说了很长一段话,大概的意思就是,导数在梯度下降中的存在就是为了指出方向,指示我们向局部最低点进发。

 

然后,就是α的问题。我们来讨论一下学习效率α大小对我们下山的影响:

 

总结一下:α太小,那我们就像小宝宝一样往下爬得超级慢,但如果α太大,就可能一步跨过了最低点,甚至南辕北辙,无法收敛反而发散出去了。

 

那如果我们恰好就在或者刚好走到了局部最低点呢?感受一下,这个时候导数是0,这是在告诉我们不要再走啦,不管步子迈多大,都只是原地踏步。所以此时就不再更新theta的值了。

 

α值都固定了,梯度下降为什么也可以让代价函数收敛到一个局部最低点呢?

 

 

事实上,我们并不会跨着相同的步子在最低点两端徘徊做无用功。因为导数不仅为我们指明了方向,也在影响我们每一步的大小。

当我们接近一个局部最低点时,梯度下降也会自然第把步子跨小。所以,没有必要减小α

 

三 Gradient Descent For Linear Regression 梯度下降在线性回归中的应用

为了了解梯度下降法的应用,我们需要首先对梯度下降公式中的导数项进行分析:

 

于是,我们直接得到了更新theta0和theta1的公式(如上图)。要推导这个公式需要一定的微积分基础,如果不熟悉也没有关系,你可以直接应用公式:

 

事实证明,用于线性回归的代价函数总是一个凸函数(convex function),因此,这个函数没有任何局部最优解,只有一个全局最优解。并且无论什么时候,你对这种代价函数使用线性回归/递归下降法得到的结果,都会是收敛到全局最优值的。因为没有全局最优以外的其他局部最优点。

 

 

 

最后,我们刚刚使用的算法有时也被称为“批量梯度下降法”,意思是——在梯度下降的每一步中,我们最终都要计算所有m值代价的求和运算,所以“批量梯度算法”也是指“一批”训练集“。

 

转载于:https://www.cnblogs.com/danscarlett/p/5944517.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
线性回归机器学习中的一种基本算梯度下降是线性回归中常用的优化算。下面是线性回归梯度下降的实现步骤: 1.读取数据集,包括自变量和因变量。 2.初始化相关参数,包括学习率、迭代次数、截距和斜率等。 3.定义计算代价函数,常用的代价函数是均方误差(MSE)。 4.梯度下降,通过不断迭代更新截距和斜率,使得代价函数最小化。 5.执行梯度下降,得到最优的截距和斜率。 下面是Python代码实现: ```python import numpy as np # 读取数据集 def load_data(file_path): data = np.loadtxt(file_path, delimiter=',') x_data = data[:, :-1] y_data = data[:, -1] return x_data, y_data # 初始化相关参数 def init_params(): b = 0 k = 0 learning_rate = 0.01 num_iterations = 1000 return b, k, learning_rate, num_iterations # 定义计算代价函数 def compute_cost(b, k, x_data, y_data): total_error = 0 for i in range(len(x_data)): total_error += (y_data[i] - (k * x_data[i] + b)) ** 2 cost = total_error / float(len(x_data)) return cost # 梯度下降 def gradient_descent(b, k, x_data, y_data, learning_rate, num_iterations): m = float(len(x_data)) for i in range(num_iterations): b_gradient = 0 k_gradient = 0 for j in range(len(x_data)): b_gradient += (1/m) * ((k * x_data[j] + b) - y_data[j]) k_gradient += (1/m) * ((k * x_data[j] + b) - y_data[j]) * x_data[j] b = b - (learning_rate * b_gradient) k = k - (learning_rate * k_gradient) return b, k # 执行梯度下降 def linear_regression(file_path): x_data, y_data = load_data(file_path) b, k, learning_rate, num_iterations = init_params() print("Starting parameters: b = {0}, k = {1}, cost = {2}".format(b, k, compute_cost(b, k, x_data, y_data))) b, k = gradient_descent(b, k, x_data, y_data, learning_rate, num_iterations) print("After {0} iterations: b = {1}, k = {2}, cost = {3}".format(num_iterations, b, k, compute_cost(b, k, x_data, y_data))) # 调用线性回归函数 linear_regression('data.csv') ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值