1.Storm第一个Demo
2.Windows下基于eclipse的Storm应用开发与调试
3.Storm实例+mysql数据库保存
4.Storm原理介绍
5. flume+kafka+storm+mysql 实时架构
1.Storm第一个Demo
Storm运行模式:
- 本地模式(Local Mode): 即Topology(相当于一个任务,后续会详细讲解) 运行在本地机器的单一JVM上,这个模式主要用来开发、调试。
- 远程模式(Remote Mode):在这个模式,我们把我们的Topology提交到集群,在这个模式中,Storm的所有组件都是线程安全的,因为它们都会运行在不同的Jvm或物理机器上,这个模式就是正式的生产模式。
- 创建一个Spout读取数据
- 创建bolt处理数据
- 创建一个Topology提交到集群
下面我们就写一下,以下代码拷贝到eclipse(依赖的jar包到官网下载即可)即可运行。
package storm.demo.spout;
import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.util.Map;
import backtype.storm.spout.SpoutOutputCollector;
import backtype.storm.task.TopologyContext;
import backtype.storm.topology.IRichSpout;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Values;
public class WordReader implements IRichSpout {
private static final long serialVersionUID = 1L;
private SpoutOutputCollector collector;
private FileReader fileReader;
private boolean completed = false;
public boolean isDistributed() {
return false;
}
/**
* 这是第一个方法,里面接收了三个参数,第一个是创建Topology时的配置,
* 第二个是所有的Topology数据,第三个是用来把Spout的数据发射给bolt
* **/
@Override
public void open(Map conf, TopologyContext context,
SpoutOutputCollector collector) {
try {
//获取创建Topology时指定的要读取的文件路径
this.fileReader = new FileReader(conf.get("wordsFile").toString());
} catch (FileNotFoundException e) {
throw new RuntimeException("Error reading file ["
+ conf.get("wordFile") + "]");
}
//初始化发射器
this.collector = collector;
}
/**
* 这是Spout最主要的方法,在这里我们读取文本文件,并把它的每一行发射出去(给bolt)
* 这个方法会不断被调用,为了降低它对CPU的消耗,当任务完成时让它sleep一下
* **/
@Override
public void nextTuple() {
if (completed) {
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
// Do nothing
}
return;
}
String str;
// Open the reader
BufferedReader reader = new BufferedReader(fileReader);
try {
// Read all lines
while ((str = reader.readLine()) != null) {
/**
* 发射每一行,Values是一个ArrayList的实现
*/
this.collector.emit(new Values(str), str);
}
} catch (Exception e) {
throw new RuntimeException("Error reading tuple", e);
} finally {
completed = true;
}
}
@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("line"));
}
@Override
public void close() {
// TODO Auto-generated method stub
}
@Override
public void activate() {
// TODO Auto-generated method stub
}
@Override
public void deactivate() {
// TODO Auto-generated method stub
}
@Override
public void ack(Object msgId) {
System.out.println("OK:" + msgId);
}
@Override
public void fail(Object msgId) {
System.out.println("FAIL:" + msgId);
}
@Override
public Map<String, Object> getComponentConfiguration() {
// TODO Auto-generated method stub
return null;
}
}
package storm.demo.bolt;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import backtype.storm.task.OutputCollector;
import backtype.storm.task.TopologyContext;
import backtype.storm.topology.IRichBolt;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Tuple;
import backtype.storm.tuple.Values;
public class WordNormalizer implements IRichBolt {
private OutputCollector collector;
@Override
public void prepare(Map stormConf, TopologyContext context,
OutputCollector collector) {
this.collector = collector;
}
/**这是bolt中最重要的方法,每当接收到一个tuple时,此方法便被调用
* 这个方法的作用就是把文本文件中的每一行切分成一个个单词,并把这些单词发射出去(给下一个bolt处理)
* **/
@Override
public void execute(Tuple input) {
String sentence = input.getString(0);
String[] words = sentence.split(" ");
for (String word : words) {
word = word.trim();
if (!word.isEmpty()) {
word = word.toLowerCase();
// Emit the word
List a = new ArrayList();
a.add(input);
collector.emit(a, new Values(word));
}
}
//确认成功处理一个tuple
collector.ack(input);
}
@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("word"));
}
@Override
public void cleanup() {
// TODO Auto-generated method stub
}
@Override
public Map<String, Object> getComponentConfiguration() {
// TODO Auto-generated method stub
return null;
}
}
第二个bolt:WordCounter
package storm.demo.bolt;
import java.util.HashMap;
import java.util.Map;
import backtype.storm.task.OutputCollector;
import backtype.storm.task.TopologyContext;
import backtype.storm.topology.IRichBolt;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.tuple.Tuple;
public class WordCounter implements IRichBolt {
Integer id;
String name;
Map<String, Integer> counters;
private OutputCollector collector;
@Override
public void prepare(Map stormConf, TopologyContext context,
OutputCollector collector) {
this.counters = new HashMap<String, Integer>();
this.collector = collector;
this.name = context.getThisComponentId();
this.id = context.getThisTaskId();
}
@Override
public void execute(Tuple input) {
String str = input.getString(0);
if (!counters.containsKey(str)) {
counters.put(str, 1);
} else {
Integer c = counters.get(str) + 1;
counters.put(str, c);
}
// 确认成功处理一个tuple
collector.ack(input);
}
/**
* Topology执行完毕的清理工作,比如关闭连接、释放资源等操作都会写在这里
* 因为这只是个Demo,我们用它来打印我们的计数器
* */
@Override
public void cleanup() {
System.out.println("-- Word Counter [" + name + "-" + id + "] --");
for (Map.Entry<String, Integer> entry : counters.entrySet()) {
System.out.println(entry.getKey() + ": " + entry.getValue());
}
counters.clear();
}
@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
// TODO Auto-generated method stub
}
@Override
public Map<String, Object> getComponentConfiguration() {
// TODO Auto-generated method stub
return null;
}
}
package storm.demo;
import storm.demo.bolt.WordCounter;
import storm.demo.bolt.WordNormalizer;
import storm.demo.spout.WordReader;
import backtype.storm.Config;
import backtype.storm.LocalCluster;
import backtype.storm.topology.TopologyBuilder;
import backtype.storm.tuple.Fields;
public class WordCountTopologyMain {
public static void main(String[] args) throws InterruptedException {
//定义一个Topology
TopologyBuilder builder = new TopologyBuilder();
builder.setSpout("word-reader",new WordReader());
builder.setBolt("word-normalizer", new WordNormalizer())
.shuffleGrouping("word-reader");
builder.setBolt("word-counter", new WordCounter(),2)
.fieldsGrouping("word-normalizer", new Fields("word"));
//配置
Config conf = new Config();
conf.put("wordsFile", "d:/text.txt");
conf.setDebug(false);
//提交Topology
conf.put(Config.TOPOLOGY_MAX_SPOUT_PENDING, 1);
//创建一个本地模式cluster
LocalCluster cluster = new LocalCluster();
cluster.submitTopology("Getting-Started-Toplogie", conf,
builder.createTopology());
Thread.sleep(1000);
cluster.shutdown();
}
}
运行这个函数我们即可看到后台打印出来的单词个数。
3.Storm实例+mysql数据库保存
package com.qing.storm.Spout;
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.InputStreamReader;
import java.util.Map;
import backtype.storm.spout.SpoutOutputCollector;
import backtype.storm.task.TopologyContext;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.base.BaseRichSpout;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Values;
@SuppressWarnings("serial")
public class ReadLogSpout extends BaseRichSpout {
private SpoutOutputCollector collector;
FileInputStream fis;
InputStreamReader isr;
BufferedReader br;
@Override
public void nextTuple() {
// TODO Auto-generated method stub
String str = "";
try {
while ((str = this.br.readLine()) != null) {
this.collector.emit(new Values(str));
Thread.sleep(100);
}
} catch (Exception e) {
e.printStackTrace();
}
}
@SuppressWarnings("rawtypes")
@Override
public void open(Map conf, TopologyContext context, SpoutOutputCollector collector) {
// TODO Auto-generated method stub
this.collector = collector;
String file = "/opt/apache-storm-0.9.3/bin/domain.log";
try{
this.fis = new FileInputStream(file);
this.isr = new InputStreamReader(fis);
this.br = new BufferedReader(isr);
} catch (Exception e) {
e.printStackTrace();
}
}
@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
// TODO Auto-generated method stub
declarer.declare(new Fields("str"));
}
}
///
package com.qing.storm.Bolt;
import backtype.storm.topology.BasicOutputCollector;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.base.BaseBasicBolt;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Tuple;
import backtype.storm.tuple.Values;
@SuppressWarnings("serial")
public class SplitBolt extends BaseBasicBolt{
@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
// TODO Auto-generated method stub
declarer.declare(new Fields("word"));
}
@Override
public void execute(Tuple tuple, BasicOutputCollector collector) {
// TODO Auto-generated method stub
String sentence = tuple.getString(0);
for(String word: sentence.split(" ")){
collector.emit(new Values(word));
}
}
}
///
package com.qing.storm.Bolt;
import java.util.HashMap;
import java.util.Map;
import backtype.storm.topology.BasicOutputCollector;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.base.BaseBasicBolt;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Tuple;
import backtype.storm.tuple.Values;
@SuppressWarnings("serial")
public class WordCountBolt extends BaseBasicBolt{
Map<String, Integer> counts = new HashMap<String, Integer>();
public void execute(Tuple tuple, BasicOutputCollector collector) {
// TODO Auto-generated method stub
String word = tuple.getString(0);
Integer count = counts.get(word);
if(count == null){
count = 0;
}
count++;
counts.put(word, count);
collector.emit(new Values(word,count));
}
@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
// TODO Auto-generated method stub
declarer.declare(new Fields("word", "count"));
}
}
///
package com.qing.storm.Bolt;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
import java.sql.Statement;
import java.util.Map;
import backtype.storm.task.OutputCollector;
import backtype.storm.task.TopologyContext;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.base.BaseRichBolt;
import backtype.storm.tuple.Tuple;
@SuppressWarnings("serial")
public class MysqlBolt extends BaseRichBolt{
private OutputCollector collector;
Connection conn = null;
String from = "word_count"; //表名
private String word;
private int num;
@Override
public void declareOutputFields(OutputFieldsDeclarer arg0) {
// TODO Auto-generated method stub
}
@Override
public void prepare(@SuppressWarnings("rawtypes") Map conf, TopologyContext context, OutputCollector collector) {
// TODO Auto-generated method stub
this.collector = collector;
try {
LinkDB();
} catch (InstantiationException e) {
// TODO Auto-generated catch block
e.printStackTrace();
} catch (IllegalAccessException e) {
// TODO Auto-generated catch block
e.printStackTrace();
} catch (SQLException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
private void LinkDB() throws InstantiationException, IllegalAccessException, SQLException {
// TODO Auto-generated method stub
String host_port = "127.0.0.1:3306";
String database = "storm_test";
String username = "root";
String password = "root";
String url = "jdbc:mysql://" + host_port + "/" + database;
try {
Class.forName("com.mysql.jdbc.Driver");
conn = DriverManager.getConnection(url, username, password);
} catch (ClassNotFoundException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
@Override
public void execute(Tuple tuple) {
// TODO Auto-generated method stub
String word= tuple.getString(0);
int num = tuple.getInteger(1);
InsertDB(word, num);
}
private void InsertDB(String word, int num) {
// TODO Auto-generated method stub
this.word = word;
this.num = num;
String sql = "replace into " + this.from+ "(word, num) values ('" +word+"',"+num+ ")";
try {
Statement statement = conn.createStatement();
statement.executeUpdate(sql);
} catch (SQLException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
}
///
package com.qing.storm.Topology;
import backtype.storm.Config;
import backtype.storm.LocalCluster;
import backtype.storm.StormSubmitter;
import backtype.storm.generated.AlreadyAliveException;
import backtype.storm.generated.InvalidTopologyException;
import backtype.storm.topology.TopologyBuilder;
import backtype.storm.tuple.Fields;
import com.qing.storm.Bolt.MysqlBolt;
import com.qing.storm.Bolt.SplitBolt;
import com.qing.storm.Bolt.WordCountBolt;
import com.qing.storm.Spout.ReadLogSpout;
public class DB_Topology {
public static void main(String[] args){
try {
TopologyBuilder builder = new TopologyBuilder();
builder.setSpout("spout", new ReadLogSpout(), 5);
builder.setBolt("split", new SplitBolt(), 8).shuffleGrouping("spout");
builder.setBolt("count", new WordCountBolt(), 10).fieldsGrouping("split", new Fields("word"));
builder.setBolt("Mysql", new MysqlBolt(),10).fieldsGrouping("count", new Fields("word","count"));
Config conf = new Config();
conf.setDebug(true);
//if (args != null && args.length > 0) {
/*设置该topology在storm集群中要抢占的资源slot数,一个slot对应这supervisor节点上的以个worker进程
如果你分配的spot数超过了你的物理节点所拥有的worker数目的话,有可能提交不成功,加入你的集群上面已经有了
一些topology而现在还剩下2个worker资源,如果你在代码里分配4个给你的topology的话,那么这个topology可以提交
但是提交以后你会发现并没有运行。 而当你kill掉一些topology后释放了一些slot后你的这个topology就会恢复正常运行。
*/
//conf.setNumWorkers(1);
if (args != null && args.length > 0) {
conf.setNumWorkers(1);
StormSubmitter.submitTopology(args[0], conf, builder.createTopology());
}
} catch (AlreadyAliveException e) {
// TODO Auto-generated catch block
e.printStackTrace();
} catch (InvalidTopologyException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
// conf.setMaxTaskParallelism(1);
// LocalCluster cluster = new LocalCluster();
// cluster.submitTopology("word-count", conf, builder.createTopology());
// try {
// Thread.sleep(1000000);
// } catch (InterruptedException e) {
// // TODO Auto-generated catch block
// e.printStackTrace();
// }
//cluster.shutdown();
}
4.Storm原理介绍
Storm是使用Clojure语言开发,但是可以在Storm中使用任何语言编写应用程序,所需的只是一个连接到Storm 的架构的适配器。已存在针对 Scala、JRuby、Perl 和 PHP 的适配器,但是还有支持流式传输到 Storm 拓扑结构中的结构化查询语言适配器。
Storm 的关键属性
Storm 实现的一些特征决定了它的性能和可靠性的。Storm 使用 ZeroMQ 传送消息,这就消除了中间的排队过程,使得消息能够直接在任务自身之间流动。在消息的背后,是一种用于序列化和反序列化 Storm 的原语类型的自动化且高效的机制。
Storm 的一个最有趣的地方是它注重容错和管理。Storm 实现了有保障的消息处理,所以每个元组都会通过该拓扑结构进行全面处理;如果发现一个元组还未处理会自动从喷嘴处重放。Storm 还实现了任务级的故障检测,在一个任务发生故障时,消息会自动重新分配以快速重新开始处理。Storm 包含比 Hadoop 更智能的处理管理,流程会由监管员来进行管理,以确保资源得到充分使用。
Storm 实现了一种数据流模型,其中数据持续地流经一个转换实体网络(参见 图 1)。一个数据流的抽象称为一个流,这是一个无限的元组序列。元组就像一种使用一些附加的序列化代码来表示标准数据类型(比如整数、浮点和字节数组)或用户定义类型的结构。每个流由一个惟一 ID 定义,这个 ID 可用于构建数据源和接收器 (sink) 的拓扑结构。流起源于喷嘴,喷嘴将数据从外部来源流入 Storm 拓扑结构中。
接收器(或提供转换的实体)称为螺栓。螺栓实现了一个流上的单一转换和一个 Storm 拓扑结构中的所有处理。螺栓既可实现 MapReduce 之类的传统功能,也可实现更复杂的操作(单步功能),比如过滤、聚合或与数据库等外部实体通信。典型的 Storm 拓扑结构会实现多个转换,因此需要多个具有独立元组流的螺栓。喷嘴和螺栓都实现为 Linux® 系统中的一个或多个任务。
使用 Storm 为词频轻松地实现 MapReduce 功能。如 图 2 中所示,喷嘴生成文本数据流,螺栓实现 Map 功能(令牌化一个流的各个单词)。来自 “map” 螺栓的流然后流入一个实现 Reduce 功能的螺栓中(以将单词聚合到总数中)。
请注意,螺栓可将数据传输到多个螺栓,也可接受来自多个来源的数据。Storm 拥有流分组 的概念,流分组实现了混排 (shuffling)(随机但均等地将元组分发到螺栓)或字段分组(根据流的字段进行流分区)。还存在其他流分组,包括生成者使用自己的内部逻辑路由元组的能力。
但是,Storm 架构中一个最有趣的特性是有保障的消息处理。Storm 可保证一个喷嘴发射出的每个元组都会处理;如果它在超时时间内没有处理,Storm 会从该喷嘴重放该元组。此功能需要一些聪明的技巧来在拓扑结构中跟踪元素,也是 Storm 的重要的附加价值之一。
除了支持可靠的消息传送外,Storm 还使用 ZeroMQ 最大化消息传送性能(删除中间排队,实现消息在任务间的直接传送)。ZeroMQ 合并了拥塞检测并调整了它的通信,以优化可用的带宽。
5. flume+kafka+storm+mysql 实时架构
flume的架构图:
kafka的架构图:
storm的架构图:
flume + kafka + storm +mysql的数据流架构图:
下面介绍一下kafka到storm的配置:
其实这些都是通过java代码实现的,这里用到了 KafkaSpout类,RDBMSDumperBolt类(以后这些可以作为工具类打包上传到集群中)
storm作业中,我们写了一个KafkaStormRdbms类,作业具体配置如下:
首先设置连接mysql的参数
ArrayList<String> columnNames = new ArrayList<String>();
ArrayList<String> columnTypes = new ArrayList<String>();
String tableName = "stormTestTable_01";
// Note: if the rdbms table need not to have a primary key, set the variable 'primaryKey' to 'N/A'
// else set its value to the name of the tuple field which is to be treated as primary key
String primaryKey = "N/A";
String rdbmsUrl = "jdbc:mysql://$hostname:3306/fuqingwuDB" ;
String rdbmsUserName = "fuqingwu";
String rdbmsPassword = "password";
//add the column names and the respective types in the two arraylists
columnNames.add("word");
//add the types
columnTypes.add("varchar (100)");
配置 KafkaSpout 及 Topology:
TopologyBuilder builder = new TopologyBuilder();
List<String> hosts = new ArrayList<String>();
hosts.add("hadoop01");
SpoutConfig spoutConf = SpoutConfig.fromHostStrings(hosts, 1, "flume_kafka", "/root", "id");
spoutConf.scheme = new StringScheme();
spoutConf.forceStartOffsetTime(-2);
spoutConf.zkServers = new ArrayList<String>() {{
add("hadoop01");
}};
spoutConf.zkPort = 2181;
//set the spout for the topology
builder.setSpout("spout", new KafkaSpout(spoutConf), 1);
//dump the stream data into rdbms table
RDBMSDumperBolt dumperBolt = new RDBMSDumperBolt(primaryKey, tableName, columnNames, columnTypes, rdbmsUrl, rdbmsUserName, rdbmsPassword);
builder.setBolt("dumperBolt",dumperBolt, 1).shuffleGrouping("spout");
原文连接:http://blog.csdn.net/baiyangfu_love/article/details/8096088
GitHub:https://github.com/baniuyao/flume-kafka
这个框架用的组件基本都是最新稳定版本,flume-ng1.4+kafka0.8+storm0.9+mysql架构设计:
1).数据采集
负责从各节点上实时采集数据,选用cloudera的flume来实现
2).数据接入
由于采集数据的速度和数据处理的速度不一定同步,因此添加一个消息中间件来作为缓冲,选用apache的kafka
3).流式计算
对采集到的数据进行实时分析,选用apache的storm
4).数据输出
对分析后的结果持久化,暂定用mysql
参考:http://blog.csdn.net/mylittlered/article/details/20810265
http://www.blogchong.com/post/storm_data_Platform.html