CODE[VS] 1010 过河卒

题目描述 Description

 如图,A 点有一个过河卒,需要走到目标 B 点。卒行走规则:可以向下、或者向右。同时在棋盘上的任一点有一个对方的马(如上图的C点),该马所在的点和所有跳跃一步可达的点称为对方马的控制点。例如上图 C 点上的马可以控制 9 个点(图中的P1,P2 … P8 和 C)。卒不能通过对方马的控制点。


  棋盘用坐标表示,A 点(0,0)、B 点(n,m)(n,m 为不超过 20 的整数,并由键盘输入),同样马的位置坐标是需要给出的(约定: C不等于A,同时C不等于B)。现在要求你计算出卒从 A 点能够到达 B 点的路径的条数。

1<=n,m<=15

输入描述 Input Description

 键盘输入
   B点的坐标(n,m)以及对方马的坐标(X,Y){不用判错}

输出描述 Output Description

  屏幕输出
    一个整数(路径的条数)。

样例输入 Sample Input

 6 6 3 2

样例输出 Sample Output

17

数据范围及提示 Data Size & Hint

如描述


对于这个棋盘类型的动态规划方法。
对于马所能到达的地方初始化为0
动态转移方程为:
dp[i][j] = dp[i -1][j] + dp[i][j - 1]  (i >0 && j > 0)
dp[i][j] = dp[i - 1][j] (j == 0)
dp[i][j] = dp[i][j - 1] (i == 0)

根据方程写出我们的代码:
*//*************************************************************************
    > File Name: 过河卒.cpp
    > Author: zhanghaoran
    > Mail: chilumanxi@gmail.com
    > Created Time: 2015年06月30日 星期二 19时02分51秒
 ************************************************************************/

#include <iostream>
#include <algorithm>
#include <utility>
#include <string.h>
using namespace std;

int mx, my;
int dp[16][16];
int bx, by;

int main(void){
	cin >> bx >> by >> mx >> my;
	for(int i = 0; i <= bx; i ++){
		for(int j = 0; j <= by; j ++){
			dp[i][j] = 1;
		}
	}
 if(mx - 2 >= 0 && my - 1 >= 0){
		dp[mx - 2][my - 1] = 0;
	}
	if(mx + 2 <= bx && my - 1 >= 0){
		dp[mx + 2][my - 1] = 0;
	}
	if(mx + 2 <= bx && my + 1 <= by){
		dp[mx + 2][my + 1] = 0;
	}
	if(mx - 2 >= 0 && my + 1 <= by){
		dp[mx - 2][my + 1] = 0;
	}
	if(mx - 1 >= 0 && my - 2 >= 0){
		dp[mx - 1][my - 2] = 0;
	}
	if(mx - 1 >= 0 && my + 2 <= by){
		dp[mx - 1][my + 2] = 0;
	}
	if(mx + 1 <= bx && my - 2 >= 0){
		dp[mx + 1][my - 2] = 0;
	}
	if(mx + 1 <= bx && my + 2 <= by){
		dp[mx + 1][my + 2] = 0;
	}
	dp[mx][my] = 0;
 	for(int i = 0; i <= bx; i ++){
		for(int j = 0; j <= by; j ++){
			if(!dp[i][j])
				continue;
			else if(i == 0 && j == 0)
				continue;
 			else if(i == 0)
				dp[i][j] = dp[i][j - 1];
			else if(j == 0)
				dp[i][j] = dp[i - 1][j];
			else
				dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
		}
	}
	cout << dp[bx][by] << endl;
	return 0;
}


转载于:https://www.cnblogs.com/chilumanxi/p/5136124.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值