BZOJ_1229_[USACO2008 Nov]toy 玩具_三分+贪心

BZOJ_1229_[USACO2008 Nov]toy 玩具_三分+贪心

Description

玩具 [Chen Hu, 2006] Bessie的生日快到了, 她希望用D (1 <= D <= 100,000; 70%的测试数据都满足 1 <= D <= 500)天来庆祝. 奶牛们的注意力不会太集中, 因此Bessie想通过提供玩具的方式来使它们高兴. 她已经计算出了第i天需要的玩具数T_i (1 <= T_i <= 50). Bessie的幼儿园提供了许多服务给它们的奶牛程序员们, 包括一个每天以Tc (1 <= Tc <= 60)美元卖出商品的玩具店. Bessie想尽可能的节省钱, 但是Farmer John担心没有经过消毒的玩具会带来传染病(玩具店卖出的玩具是经过消毒的). 有两种消毒的方式. 第1种方式需要收费C1美元, 需要N1个晚上的时间; 第2种方式需要收费 C2美元, 需要N2个晚上的时间(1 <= N1 <= D; 1 <= N2 <= D; 1 <= C1 <= 60; 1 <= C2 <= 60). Bessie在party结束之后把她的玩具带去消毒. 如果消毒只需要一天, 那么第二天就可以拿到; 如果还需要一天, 那么第三天才可以拿到. 作为一个受过教育的奶牛, Bessie已经了解到节约的意义. 帮助她找到提供玩具的最便宜的方法.

Input

* 第 1 行: 六个用空格隔开的整数 D, N1, N2, C1, C2, Tc

* 第 2..D+1 行: 第 i+1 行包含一个整数: T_i

Output

第 1 行: 提供玩具所需要的最小费用.

Sample Input

4 1 2 2 1 3
8
2
1
6

Sample Output

35


 

三分到底买多少玩具。

打个表发现确实是单峰函数。。证明的话不会。

可能是因为跑费用流时单位费用和最短路单调吧。

贪心还是比较简单的。

优先用已经买好的,因为这个费用是0。

否则用慢洗的,这个可以维护一个指针。

如果慢洗洗不过来就用快洗,快洗要尽可能用最近剩下的,因为要给慢洗留出时间,用一个栈来维护。

注意这里的慢洗,快洗是根据数据的,费用少的那个作为慢洗(不管时间)

 

代码:

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define N 100050
int c1,c2,n1,n2,n,t[N],tc,b[N],S[N],top;
int check(int x) {
    int re=x*tc,i,l=1; top=0;
    for(i=1;i<=n;i++) b[i]=t[i];
    for(i=1;i<=n;i++) {
        int lft=t[i];
        if(x>=lft) x-=lft,lft=0;
        else lft-=x,x=0;
        while(l<=i-n1&&lft) {
            if(lft<=b[l]) re+=c1*lft,b[l]-=lft,lft=0;
            else re+=c1*b[l],lft-=b[l],b[l]=0,l++;
        }
        while(top&&lft) {
            int u=S[top-1];
            if(lft<=b[u]) re+=c2*lft,b[u]-=lft,lft=0;
            else re+=c2*b[u],lft-=b[u],b[u]=0,top--;
        }
        if(i-n2+1>=1) S[top++]=i-n2+1;
        if(lft) return 1<<30;
    }
    return re;
}
int main() {
    scanf("%d%d%d%d%d%d",&n,&n1,&n2,&c1,&c2,&tc);
    if(c1>c2) swap(c1,c2),swap(n1,n2);
    int i,sum=0;
    for(i=1;i<=n;i++) scanf("%d",&t[i]),sum+=t[i];
    int l=t[1],r=sum;
    while(r-l>6) {
        int m1=(l+l+r)/3,m2=(l+r+r)/3;
        if(check(m1)<check(m2)) r=m2;
        else l=m1;
    }
    int ans=1<<30;
    for(i=l;i<=r;i++) ans=min(ans,check(i));
    printf("%d\n",ans);
}

 

转载于:https://www.cnblogs.com/suika/p/9126852.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
C语言是一种广泛使用的编程语言,它具有高效、灵活、可移植性强等特点,被广泛应用于操作系统、嵌入式系统、数据库、编译器等领域的开发。C语言的基本语法包括变量、数据类型、运算符、控制结构(如if语句、循环语句等)、函数、指针等。在编写C程序时,需要注意变量的声明和定义、指针的使用、内存的分配与释放等问题。C语言中常用的数据结构包括: 1. 数组:一种存储同类型数据的结构,可以进行索引访问和修改。 2. 链表:一种存储不同类型数据的结构,每个节点包含数据和指向下一个节点的指针。 3. 栈:一种后进先出(LIFO)的数据结构,可以通过压入(push)和弹出(pop)操作进行数据的存储和取出。 4. 队列:一种先进先出(FIFO)的数据结构,可以通过入队(enqueue)和出队(dequeue)操作进行数据的存储和取出。 5. 树:一种存储具有父子关系的数据结构,可以通过中序遍历、前序遍历和后序遍历等方式进行数据的访问和修改。 6. 图:一种存储具有节点和边关系的数据结构,可以通过广度优先搜索、深度优先搜索等方式进行数据的访问和修改。 这些数据结构在C语言中都有相应的实现方式,可以应用于各种不同的场景。C语言中的各种数据结构都有其优缺点,下面列举一些常见的数据结构的优缺点: 数组: 优点:访问和修改元素的速度非常快,适用于需要频繁读取和修改数据的场合。 缺点:数组的长度是固定的,不适合存储大小不固定的动态数据,另外数组在内存中是连续分配的,当数组较大时可能会导致内存碎片化。 链表: 优点:可以方便地插入和删除元素,适用于需要频繁插入和删除数据的场合。 缺点:访问和修改元素的速度相对较慢,因为需要遍历链表找到指定的节点。 栈: 优点:后进先出(LIFO)的特性使得栈在处理递归和括号匹配等问题时非常方便。 缺点:栈的空间有限,当数据量较大时可能会导致栈溢出。 队列: 优点:先进先出(FIFO)的特性使得
### 回答1: bzoj[1597][usaco2008 mar]土地购买 斜率优化 这道题是一道经典的斜率优化题目,需要用到单调队列的思想。 首先,我们可以将题目中的式子进行变形,得到: f[i] = f[j] + (sum[i] - sum[j] - m) ^ 2 + k 其中,sum[i] 表示前缀和,m 和 k 都是常数。 我们可以将式子中的 sum[i] 和 k 看作常数,那么我们需要优化的就是 (sum[i] - sum[j] - m) ^ 2 这一项。 我们可以将其展开,得到: (sum[i] - sum[j] - m) ^ 2 = sum[i] ^ 2 - 2 * sum[i] * (sum[j] + m) + (sum[j] + m) ^ 2 我们可以将其看作一个二次函数,其中 a = 1,b = -2 * (sum[j] + m),c = (sum[j] + m) ^ 2。 我们可以发现,当 j < k 时,如果 f[j] + a * sum[j] + b * sum[j] <= f[k] + a * sum[k] + b * sum[k],那么 j 就不可能是最优决策点,因为 k 比 j 更优。 因此,我们可以用单调队列来维护决策点。具体来说,我们可以维护一个单调递增的队列 q,其中 q[i] 表示第 i 个决策点的下标。每次加入一个新的决策点 i 时,我们可以将队列尾部的决策点 j 弹出,直到队列为空或者 f[j] + a * sum[j] + b * sum[j] <= f[i] + a * sum[i] + b * sum[i]。然后,我们将 i 加入队列尾部。 最后,队列头部的决策点就是最优决策点。我们可以用类似于双指针的方法来维护队列头部的决策点是否在当前区间内,如果不在,就弹出队列头部。 时间复杂度为 O(n)。 ### 回答2: 这道题目属于斜率优化的经典题目,难度较高,需要掌握一定的数学知识。 首先,我们可以将题目中的“最大利润”转化为“最小成本”,这样问题就变成了找到一个方案,使得购买土地的成本最小。 接着,我们考虑如何用斜率优化来解决这个问题。我们可以定义一个函数f(i),表示前i块土地的最小成本。 显然,f(1)=0,因为不需要购买任何土地。 对于f(i),它可以由f(j)+b(i)×a(j+1)得到,其中j<i,a(j+1)表示第j+1块土地的面积,b(i)表示第i块土地的价格。这个式子的含义是,我们现在要购买第i块土地,那么前面的土地(即前j块)就都要买,所以f(j)表示前j块土地的最小成本,b(i)×a(j+1)表示购买第i块土地的成本。 那么,我们可以得到递推公式: f(i)=min{f(j)+b(i)×a(j+1)},其中j<i。 这个公式看起来很简单,但是要注意的是,当b(i)×a(j+1)的斜率相同时,我们需要取其中面积较小的土地,因为它的价格更低。因此,我们需要对斜率进行排序,并在递推中用单调队列维护斜率相等的情况下面积最小的土地。 最终,f(n)就是题目所求的最小成本。 总之,这道题目需要深入理解斜率优化算法的原理和实现方式,并且需要注意细节处理,如果能够顺利地解决这个问题,那么对于斜率优化算法的掌握程度就有了很大的提升。 ### 回答3: 土地购买问题可以采用斜率优化算法来解决。这个问题可以转化为一个单调队列的问题。 首先,我们需要对土地价格按照边长从小到大排序。然后,对于每块土地,我们需要求出它的贡献。设 $f_i$ 表示前 $i$ 块土地连续的最小代价。 设当前处理到第 $i$ 块土地,已经求出了前 $j$ 块土地的最小代价 $f_j$。那么我们可以得到下面这个式子: $$ f_i=\min\limits_{j=1}^{i-1}\{f_j+(S_i-S_j)^2+P\} $$ 式子中,$S_i$ 表示前 $i$ 块土地的边长和,$P$ 表示额外购买土地的代价。首先,不考虑额外购买土地,我们可以使用动态规划来求出 $f_i$。但是,考虑到额外购买土地的代价 $P$ 是一个固定值,我们可以考虑将它与某一块土地的代价合并起来,这样就可以使用斜率优化技术来优化动态规划算法。 我们定义一个决策点 $j$,表示我们当前要处理第 $i$ 块土地时,已经处理过 $j$ 块土地,并将第 $j+1$ 块土地到第 $i$ 块土地购买,所需的最小代价。我们假设 $S_i>S_j$,则可以得到下面这个式子: $$ f_i=\min\limits_{j=1}^{i-1}\{f_j+(S_i-S_j)^2+P\} $$ 将它整理成斜率截距式可以得到: $$ y=kx+b $$ 其中 $k=(S_j)^2-2S_iS_j$,$b=f_j+(S_i)^2+P-S_j^2$,$x=S_j$,$y=f_j+(S_j-S_i)^2-S_j^2$。我们发现 $k$ 是一个单调递减的函数,因此我们可以使用一个单调队列来维护所有可能成为决策点的点。对于每个点,我们计算函数 $y$ 的值并将它们加入队列,然后取队头元素的值作为 $f_i$。 综上所述,我们可以使用斜率优化技术来解决土地购买问题,时间复杂度为 $O(n)$。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值