[USACO08NOV]玩具Toys [洛谷2917] [bzoj1229]

1 篇文章 0 订阅
1 篇文章 0 订阅
  • 题意
    餐巾计划问题(费用流经典题),数据加强( 1N105 )。

  • Solution
    f(x) 代表购买 x 个新玩具所需要的最小花费,那么f是一个单峰的函数,可以使用三分法求解。
    f(x) 可以通过贪心的方法求出,这个稍后详细介绍。

————

  • 接下来简单说明一下这个单峰。假设当 x=t 时有最优解 f(t) 。若取 x=t+1 ,那么就会多了一个新买的玩具没有用,浪费了,不会出现更优解,不难发现当 x=t+k(kN) ,该结论均成立;若取 x=t1 ,考虑使用费用流求解时,也就是有有一条在最短路上的边没有走,可能走的是其他最短路径或者次短路,也不会出现更优解, x=tk 时类似。

————

  • 然后说说贪心法计算 f(x) 。为了方便描述,不妨设 c1c2 不难发现,当前所需要的玩具,首先应该考虑已经购买但是还没有使用的新玩具,因为额外花费为0;在这之后,再考虑便宜点的 c1 ,而且是离当前越近越好,因为再往前的天数可能没有足够的脏玩具用来洗;最后再考虑贵的 c2 ,这时候应该离当前越远越好,因为越往前靠的话,洗好的玩具就有更大的机会用来用 c1 洗,可以为以后减少花费。
#include <bits/stdc++.h>
using namespace std ;
void Read ( int &x, char c = getchar() ) {
    for ( x = 0 ; !isdigit(c) ; c = getchar() ) ;
    for ( ; isdigit(c) ; c = getchar() ) x = 10*x + c - '0' ;
}
const int maxn = 1e5+5, zhf = 0x3f3f3f3f ;
int n, m, t[maxn], s[maxn], tc, n1, n2, c1, c2 ;
struct node {
    int id, val ;
} ;
deque <node> Q ;
int calc ( int x ) {
    int rec = (tc - c2)*x, i, k ;
    node tmp ;    
    Q.clear() ;    
    Q.push_front( (node){-n2, x} ) ;    
    for ( i = 1 ; i <= n ; i ++ ) {
        m = t[i] ;
        if ( i - n1 >= 1 ) Q.push_front( (node){i - n1, t[i - n1]} ) ; 
        while(m) {
            if ( Q.empty() ) return zhf ;
            tmp = Q.back() ;
            if ( tmp.id + n2 <= i && c1 > c2 ) {
                k = min(m, tmp.val) ;
                m -= k ; tmp.val -= k ;
                rec += k*c2 ;
                Q.pop_back() ;
                if ( tmp.val ) Q.push_back(tmp) ;
            } else {
                tmp = Q.front() ;
                k = min(m, tmp.val) ;
                m -= k ; tmp.val -= k ;
                rec += k*c1 ;
                Q.pop_front() ;
                if ( tmp.val ) Q.push_front(tmp) ;
            }
        }
    }
    return rec ;
}
int main() {
    int i, k, l = 1, r = 0, mid1, mid2 ;
    Read(n) ; Read(n1) ; Read(n2) ; Read(c1) ; Read(c2) ; Read(tc) ;
    if ( n1 > n2 ) swap(n1, n2), swap(c1, c2) ;
    for ( i = 1 ; i <= n ; i ++ ) {
        Read(t[i]) ;
        r += t[i] ;
    }
    while ( r - l > 20 ) {
        mid1 = (l*2 + r)/3 ;
        mid2 = (l + r*2)/3 ;
        if ( calc(mid1) >= calc(mid2) ) l = mid1 ;
        else r = mid2 ;
    }
    k = zhf ;
    for ( i = l ; i <= r ; i ++ )
        k = min(k, calc(i)) ;    
    printf ( "%d\n", k ) ;    
    return 0 ;
}
目描述 农夫约翰一直在观察他的奶牛们。他注意到,如果在牛群中有太多的牛靠得太近,就会导致不健康的行为和情感问。 约翰想知道他的牛群是否存在这个问。他定义这个问为:在一个固定长度的路段上,如果有两头高度大于等于 $y$ 的奶牛之间的距离小于 $x$,则牛群中就存在一个挤得太近的情况。 约翰有 $N$ 头牛 ($1 \leq N \leq 50,000$),每头牛的高度为 $h_i$ ($1 \leq h_i \leq 1,000,000$)。他想知道是否存在一对牛,使得它们之间的距离小于 $x$,且它们的高度都大于等于 $y$。 输入格式 第一行包含三个整数 $N, L, R$,分别表示牛的数量,路段长度,和问的最大高度。 接下来 $N$ 行,每行一个整数 $h_i$,表示每头牛的高度。 输出格式 如果存在一对牛,它们之间的距离小于 $x$,且它们的高度都大于等于 $y$,则输出 $1$,否则输出 $0$。 输入样例1 4 6 4 4 4 5 7 输出样例1 1 输入样例2 5 3 3 1 5 5 5 5 输出样例2 0 提示 对于 $30\%$ 的数据,$N \leq 500$。 对于 $100\%$ 的数据,$1 \leq N \leq 50,000$,$1 \leq L \leq 1,000,000$,且 $L \leq R$。 数据范围 时间限制:1.0s,空间限制:256MB 算法1 (暴力枚举) $O(n^2)$ 首先对输入的牛的高度进行排序,之后枚举每头牛,再枚举它后面的每头牛,如果两头牛的高度均大于等于 $y$,且它们之间的距离小于 $x$,则输出 $1$。如果最后仍然没有满足条件的牛,则输出 $0$。 时间复杂度 暴力枚举,时间复杂度为 $O(n^2)$,无法通过此。 算法2 (滑动窗口) $O(n \log n)$ 为了方便后续操作,我们将所有的牛按照它们的高度从小到大排序。之后,我们维护一个长度为 $L$ 的滑动窗口,它的右端点与左端点之间的距离小于 $x$。我们从左到右扫描每头牛,将它加入滑动窗口的左端点,同时将滑动窗口右移,直到滑动窗口的右端点与左端点之间的距离小于 $x$。 在处理完一头牛之后,我们需要判断滑动窗口中是否存在一对牛,它们的高度均大于等于 $y$,且它们之间的距离小于 $x$。我们可以用双指针来实现这个操作。我们从滑动窗口的左端点开始,向右移动一个指针 $i$,同时向右移动一个指针 $j$,直到 $h_j - h_i \leq x$。在这个过程中,我们需要判断 $h_i$ 和 $h_j$ 是否均大于等于 $y$。如果存在一对牛满足条件,则输出 $1$。如果最后仍然没有满足条件的牛,则输出 $0$。 时间复杂度 因为需要对所有的牛进行排序,所以时间复杂度为 $O(n \log n)$。 C++ 代码 算法3 (暴力优化) $O(n \log n)$ 首先对输入的牛的高度进行排序,之后枚举每头牛。如果当前牛的高度小于 $y$,则跳过这头牛。否则,我们从它的左边和右边各扩展出一个长度为 $x$ 的区间。如果这两个区间内的牛的数量均大于等于 $2$,且这两个区间中任意两头牛的高度均大于等于 $y$,则输出 $1$。 时间复杂度 因为需要对所有的牛进行排序,所以时间复杂度为 $O(n \log n)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值