BZOJ5305: [Haoi2018]苹果树

BZOJ5305: [Haoi2018]苹果树

https://lydsy.com/JudgeOnline/problem.php?id=5305

分析:

  • 需要推一推式子的题。
  • 枚举\(i\),考虑与父亲这条边的贡献。
  • 枚举子树大小\(j\),则贡献为\(j(n-j)\)
  • 求方案数,子树内的方案数为\(\binom{n-i}{j-1}j!\)
  • 子树外的方案数:
  • 先考虑\(i\)以上的部分\(i!\),在向其中插入剩下的\(n-i-j+1\)个点。
  • 插第一个点有\(i+1\)种方案,插最后一个点有\(n+j-1\)种方案。
  • 这部分贡献即\(\frac{(n+j-1)!}{i!}\)
  • 整理可得式子,见代码。

代码:

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cstdlib>
using namespace std;
typedef long long ll;
#define N 2050
int mod,n;
ll C[N][N],fac[N];
int main() {
    scanf("%d%d",&n,&mod);
    int i,j;
    for(i=0;i<=n;i++) {
        C[i][0]=1;
        for(j=1;j<=i;j++) {
            C[i][j]=(C[i-1][j]+C[i-1][j-1])%mod;
        }
    }
    for(fac[0]=i=1;i<=n;i++) fac[i]=fac[i-1]*i%mod;
    ll ans=0;
    for(i=2;i<=n;i++) {
        for(j=1;j<=n-i+1;j++) {
            ans=(ans+j*(n-j)*C[n-i][j-1]%mod*fac[j]%mod*i*(i-1)%mod*fac[n-j-1])%mod;
        }
    }
    printf("%lld\n",(ans+mod)%mod);
}

转载于:https://www.cnblogs.com/suika/p/10230103.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值