BZOJ5305: [Haoi2018]苹果树
https://lydsy.com/JudgeOnline/problem.php?id=5305
分析:
- 需要推一推式子的题。
- 枚举\(i\),考虑与父亲这条边的贡献。
- 枚举子树大小\(j\),则贡献为\(j(n-j)\)。
- 求方案数,子树内的方案数为\(\binom{n-i}{j-1}j!\)
- 子树外的方案数:
- 先考虑\(i\)以上的部分\(i!\),在向其中插入剩下的\(n-i-j+1\)个点。
- 插第一个点有\(i+1\)种方案,插最后一个点有\(n+j-1\)种方案。
- 这部分贡献即\(\frac{(n+j-1)!}{i!}\)
- 整理可得式子,见代码。
代码:
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cstdlib>
using namespace std;
typedef long long ll;
#define N 2050
int mod,n;
ll C[N][N],fac[N];
int main() {
scanf("%d%d",&n,&mod);
int i,j;
for(i=0;i<=n;i++) {
C[i][0]=1;
for(j=1;j<=i;j++) {
C[i][j]=(C[i-1][j]+C[i-1][j-1])%mod;
}
}
for(fac[0]=i=1;i<=n;i++) fac[i]=fac[i-1]*i%mod;
ll ans=0;
for(i=2;i<=n;i++) {
for(j=1;j<=n-i+1;j++) {
ans=(ans+j*(n-j)*C[n-i][j-1]%mod*fac[j]%mod*i*(i-1)%mod*fac[n-j-1])%mod;
}
}
printf("%lld\n",(ans+mod)%mod);
}