果然只有我这种菜鸡才会用这种菜鸡做法QwQ
对于一类要求期望的题目,有一个无脑的做法:
设概率为
f
f
f,期望为
g
g
g
每次合并两个二元组
<
f
1
,
g
1
>
,
<
f
2
,
g
2
>
<f_1,g_1>,<f_2,g_2>
<f1,g1>,<f2,g2> 的方法显然为
<
f
1
×
f
2
,
g
1
×
f
2
+
f
1
×
g
2
>
<f_1\times f_2,g_1\times f_2+f_1\times g_2>
<f1×f2,g1×f2+f1×g2>
对于这一道题,设
i
i
i 个点的树的方案数
f
i
f_i
fi,到根的距离和为
g
i
g_i
gi,距离总合
h
i
h_i
hi
显然
f
i
=
i
!
f_i=i!
fi=i!
(我TM写了个这个东西
f
[
0
]
=
f
[
1
]
=
1
,
f
[
i
]
=
∑
f
[
j
−
1
]
f
[
i
−
j
]
(
i
−
1
j
−
1
)
f[0]=f[1]=1,f[i]=\sum f[j-1]f[i-j]\binom{i-1}{j-1}
f[0]=f[1]=1,f[i]=∑f[j−1]f[i−j](j−1i−1)结果发现我是zz)
g
i
g_i
gi 的合并要将左右的树的
g
g
g 分别加上
1
1
1
h
i
h_i
hi 的合并要将左右的树的
g
g
g 分别加上
1
1
1 然后拼起来再加上左右的
h
h
h
最后
h
i
h_i
hi 还要算上
g
i
g_i
gi
# include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn(2005);
int n, mod, c[maxn][maxn], f[maxn], g[maxn], h[maxn];
inline void Inc(int &x, const int y) {
x = x + y >= mod ? x + y - mod : x + y;
}
inline int Add(const int x, const int y) {
return x + y >= mod ? x + y - mod : x + y;
}
int main() {
int i, j, tmp1, tmp2;
scanf("%d%d", &n, &mod), f[0] = f[1] = c[0][0] = 1;
for (i = 2; i <= n; ++i) f[i] = (ll)f[i - 1] * i % mod;
for (i = 1; i <= n; ++i)
for (c[i][0] = j = 1; j <= i; ++j) c[i][j] = Add(c[i - 1][j - 1], c[i - 1][j]);
for (i = 2; i <= n; ++i) {
for (j = 1; j <= i; ++j) {
Inc(g[i], tmp1 = (ll)Add((ll)f[i - j] * (i - j) % mod, g[i - j]) * c[i - 1][j - 1] % mod * f[j - 1] % mod);
Inc(g[i], tmp2 = (ll)Add((ll)f[j - 1] * (j - 1) % mod, g[j - 1]) * c[i - 1][j - 1] % mod * f[i - j] % mod);
Inc(h[i], (ll)Add((ll)h[i - j] * f[j - 1] % mod, (ll)h[j - 1] * f[i - j] % mod) * c[i - 1][j - 1] % mod);
Inc(h[i], Add((ll)tmp1 * (j - 1) % mod, (ll)tmp2 * (i - j) % mod));
}
Inc(h[i], g[i]);
}
printf("%d\n", h[n]);
return 0;
}