BZOJ_4873_[Shoi2017]寿司餐厅_最大权闭合子图
题意:http://www.lydsy.com/JudgeOnline/problem.php?id=4873
分析:我们发现分数正负都有,并且之间有依赖关系,很容易想到最大权闭合子图。
建图:
1.S向正点连边,负点向T连边。
2.选了[i~j]显然要选[i+1~j]和[i~j-1],分别连边。
3.对于i==j的点,向对应的寿司连边。
4.总花费m*x*x+c*x拆成两部分。对于每个代号x,向T连容量为m*x*x的边,c*x这部分我们考虑算f[i][i]时把f[i][i]的值减掉x,当然也可以每个寿司向T连容量为x的边。
完了。
代码:
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <queue>
using namespace std;
#define inf 100000000
#define LL long long
#define S (30000)
#define T (30001)
int d[110][110],n,m;
int head[31000],to[4000000],nxt[4000000],cnt=1;
int dep[31000],a[110],tot,idx[110][110],mxn;
LL flow[4000000],sum;
inline void add(int u,int v,LL f)
{
to[++cnt]=v;nxt[cnt]=head[u];head[u]=cnt;flow[cnt]=f;
to[++cnt]=u;nxt[cnt]=head[v];head[v]=cnt;flow[cnt]=0;
}
bool bfs()
{
queue <int> q;
memset(dep,0,sizeof(dep));
dep[S]=1;q.push(S);
while(!q.empty())
{
int x=q.front();q.pop();
for(int i=head[x];i;i=nxt[i])
{
if(!dep[to[i]]&&flow[i])
{
dep[to[i]]=dep[x]+1;
if(to[i]==T)return 1;
q.push(to[i]);
}
}
}
return 0;
}
LL dfs(int x,LL mf)
{
if(x==T)return mf;
LL nf=0;
for(int i=head[x];i;i=nxt[i])
{
if(dep[to[i]]==dep[x]+1&&flow[i])
{
int tmp=dfs(to[i],min(flow[i],mf-nf));
nf+=tmp;
flow[i]-=tmp;
flow[i^1]+=tmp;
if(nf==mf)break;
}
}
dep[x]=0;
return nf;
}
void dinic()
{
LL f;
while(bfs())
{
while(f=dfs(S,inf))
sum-=f;
}
printf("%lld",sum);
}
int main()
{
register int i,j;
scanf("%d%d",&n,&m);
for(i=1;i<=n;i++)
for(j=i;j<=n;j++)
idx[i][j]=++tot;
for(i=1;i<=n;i++)scanf("%d",&a[i]),mxn=max(mxn,a[i]);
for(i=1;i<=mxn;i++)add(tot+i,T,m*i*i);
for(i=1;i<=n;i++)add(idx[i][i],tot+a[i],inf);
for(i=1;i<=n;i++)
{
for(j=i;j<=n;j++)
{
scanf("%d",&d[i][j]);
if(i==j)d[i][j]-=a[i];
else{
add(idx[i][j],idx[i+1][j],inf);
add(idx[i][j],idx[i][j-1],inf);
}
if(d[i][j]>0)
{
sum+=d[i][j];
add(S,idx[i][j],d[i][j]);
}
else{
add(idx[i][j],T,-d[i][j]);
}
}
}
dinic();
}