n个点,m条边的有向图,求最多能增加多少条边,原图任然不是强连通图。
将问题转化为,n个点的完全图,共有n*(n-1)条边,除去原有的m条边,最少删多少条边,使得该图不是强连通图?
求出scc后缩点得到scc图,对于一个scc点,如果他的入度为0,那么只需在完全图中,删去所有指向该强连通分量的边就行了,对于出度为0的scc点也是如此。而要求最大的可加边数,只需求出入度或者出度为0的点权最小的那个scc就行,答案便是n*(n-1) - m - sum[_scc] * (n-sum[_scc]) 。
#include<iostream>
#include<algorithm>
#include<vector>
#include<string>
#include<queue>
#include<stack>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<fstream>
#include<sstream>
#include<map>
#include<set>
#define FF(i, a, b) for(int i=a; i<b; i++)
#define FD(i, a, b) for(int i=a; i>=b; i--)
#define REP(i, n) for(int i=0; i<n; i++)
#define CLR(a, b) memset(a, b, sizeof(a))
#define LL long long
#define PB push_back
#define debug puts("**debug**")
using namespace std;
const int maxn = 100001;
int n, m, u, v;
int pre[maxn], low[maxn], dfs_clock, scc_cnt, sccno[maxn], in[maxn], out[maxn], sum[maxn];
vector<int> G[maxn];
stack<int> S;
void dfs(int u)
{
pre[u] = low[u] = ++dfs_clock;
S.push(u);
REP(i, G[u].size())
{
int v = G[u][i];
if(!pre[v])
{
dfs(v);
low[u] = min(low[u], low[v]);
}
else if(!sccno[v]) low[u] = min(low[u], pre[v]);
}
if(low[u] == pre[u])
{
scc_cnt++;
for(;;)
{
int x = S.top(); S.pop();
sccno[x] = scc_cnt;
if(x == u) break;
}
}
}
void find_scc()
{
dfs_clock = scc_cnt = 0;
CLR(pre, 0); CLR(sccno, 0); CLR(in, 0); CLR(out, 0); CLR(sum, 0);
FF(i, 1, n+1) if(!pre[i]) dfs(i);
}
int main()
{
int T; scanf("%d", &T);
FF(kase, 1, T+1)
{
scanf("%d%d", &n, &m);
FF(i, 1, n+1) G[i].clear();
REP(i, m)
{
scanf("%d%d", &u, &v);
G[u].PB(v);
}
find_scc();
printf("Case %d: ", kase);
if(scc_cnt == 1)
{
puts("-1");
continue;
}
LL ans = n*(n-1) - m;
FF(u, 1, n+1)
{
sum[sccno[u]]++;
REP(i, G[u].size())
{
int v = G[u][i];
if(sccno[u] != sccno[v]) out[sccno[u]]++, in[sccno[v]]++;
}
}
int tmp = 1e9;
FF(i, 1, scc_cnt+1)
if(in[i] == 0 || out[i] == 0) tmp = min(tmp, sum[i]);
ans -= tmp*(n-tmp);
printf("%lld\n", ans);
}
return 0;
}