又看到一个以前见到过的题。。。但当时不知二维背包为何物。。。还是比较裸的二维背包的。
状态转移方程: dp[j][l] = max(dp[j][l], dp[j-v[i]][l-1] + cost[i]);
其中dp[i][j] 表示消耗度为i,刷怪数为j时得到的最大经验值,由于每种怪都有无数个,是完全背包模型,注意三个for中循环的顺序。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn = 110;
int n, m, k, s, dp[maxn][maxn];
int cost[maxn], v[maxn];
int main()
{
while(~scanf("%d%d%d%d", &n, &m, &k, &s))
{
for(int i=0; i<k; i++) scanf("%d%d", &cost[i], &v[i]);
memset(dp, 0, sizeof(dp));
for(int i=0; i<k; i++)
for(int j=v[i]; j<=m; j++) //此处为完全背包模型
for(int l=1; l<=s; l++)
{
dp[j][l] = max(dp[j][l], dp[j-v[i]][l-1] + cost[i]);
}
bool flag = 1;
for(int j=0; j<=m; j++)
if(dp[j][s] >= n)
{
flag = 0;
printf("%d\n", m-j);
break;
}
if(flag) puts("-1");
}
return 0;
}