Paper Reading - Show, Attend and Tell: Neural Image Caption Generation with Visual Attention ( ICML ...

Link of the Paper: https://arxiv.org/pdf/1502.03044.pdf

Main Points:

  1. Encoder-Decoder Framework: Encoder uses a convolutional neural network to extract a set of feature vectors which the authors refer to as annotation vectors. The extractor produces L vectors, each of  which is a D-dimensional representation corresponding to a part of the image. a = { a1, ..., aL }, ai ∈ RD. In order to obtain a correspondence between the feature vectors and portions of the 2-D image, they extract features from a lower convolutional layer unlike previous work which instead used a fully connected layer. This allows the decoder to selectively focus on certain parts of an image by weighting a subset of all the feature vectors. Decoder uses a LSTM network to produce a caption by generating one word at every time step conditioned on a context vector, the previous hidden state and the previously generated words.
  2. Two attention-based image caption generators under a common framework: a "soft" deterministic attention mechanism trainable by standard back-propagation methods; and a "hard" stochastic attention mechanism trainable by maximizing an approximate variational lower bound or equivalently by Reinforce.

Other Key Points:

  1. Rather than compress an entire image into a static representation, attention allows for salient features to dynamically come to the forefront as needed. This is especially important when there is a lot of clutter in an image. Using representations ( such as those from the very top layer of a conv net ) that distill information in image down to the most salient objects is one effective solution that has been widely adopted in previous work. Unfortunately, this has one potential drawback of losing information which could be useful for richer, more descriptive captions. Using lower-level representation can help preserve this information.
posted on 2018-08-21 16:44  LZ_Jaja 阅读( ...) 评论( ...) 编辑 收藏

转载于:https://www.cnblogs.com/zlian2016/p/9512284.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值