wendy_ya
码龄4年
  • 1,158,948
    被访问
  • 336
    原创
  • 1,311
    排名
  • 10,974
    粉丝
关注
提问 私信

个人简介:控制类专业在读研究生

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2018-03-21
博客简介:

Wendy的博客

查看详细资料
  • 9
    领奖
    总分 8,330 当月 169
个人成就
  • 获得1,929次点赞
  • 内容获得551次评论
  • 获得8,903次收藏
创作历程
  • 108篇
    2022年
  • 149篇
    2021年
  • 67篇
    2020年
  • 7篇
    2019年
  • 7篇
    2018年
成就勋章
TA的专栏
  • 基于GAN的时序缺失数据填补
    付费
    4篇
  • 基于GAN的离散缺失数据填补
    付费
    13篇
  • 基于PyTorch的生成对抗网络详解
    付费
    18篇
  • 基于Keras的生成对抗网络详解
    付费
    15篇
  • 基于机器学习的心脏病预测方法
    付费
    10篇
  • 基于神经网络的系统辨识
    付费
    11篇
  • Qt
    82篇
  • STM32
  • 51单片机
    6篇
  • MySQL
    3篇
  • photoshop
    7篇
  • MATLAB
    64篇
  • MATLAB图像处理实用案例
    8篇
  • RNN循环神经网络
    3篇
  • Android
    1篇
  • C++
    43篇
  • 目录
    4篇
  • 科普
    12篇
  • 毕业设计
    6篇
  • 手写数字识别
    9篇
  • 控制理论
    3篇
  • 神经网络
    20篇
  • Ubuntu
    3篇
  • PyTorch
    39篇
  • matplotlib
    2篇
  • Anaconda
    5篇
  • 其他
    18篇
  • python
    86篇
  • Word
    5篇
兴趣领域 设置
  • 编程语言
    pythonc++qt
  • 人工智能
    机器学习深度学习神经网络图像处理
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

Qt实战案例(56)——利用QProcess实现应用程序重启功能

本文介绍利用QProcess实现应用程序重启功能。实现应用程序重启功能在Qt中实现非常简单,需要用到QProcess类一个静态方法。
原创
发布博客 2022.07.31 ·
317 阅读 ·
2 点赞 ·
1 评论

Qt实战案例之利用QProcess实现应用程序重启功能.zip

发布资源 2022.07.31 ·
zip

Qt实战案例(55)——利用QDir删除选定文件目录下的空文件夹

本文介绍利用QDir删除选定文件目录下的所有空文件夹。
原创
发布博客 2022.07.31 ·
127 阅读 ·
0 点赞 ·
0 评论

Qt实战案例之利用QDir删除选定文件目录下的空文件夹.zip

发布资源 2022.07.31 ·
zip

Qt实战案例(54)——利用QPixmap设计图片透明度

本文介绍利用QPixmap设计图片透明度,可以看到拖动下方进度条,用于控制上方图片的透明度。
原创
发布博客 2022.07.31 ·
177 阅读 ·
1 点赞 ·
0 评论

Qt实战案例之利用QPixmap设计图片透明度.zip

发布资源 2022.07.31 ·
zip

pytorch与keras的相互转换(代码以LeNet-5为例)

本文以LeNet-5为例,简单介绍pytorch与keras的相互转换。
原创
发布博客 2022.07.29 ·
89 阅读 ·
0 点赞 ·
0 评论

Qt实战案例(53)——利用QDrag实现拖拽拼图功能

本文介绍利用QDrag类实现拖拽拼图功能。左边是打散的图,拖动到右边进行复现,此外程序还支持手动拖入原图片。
原创
发布博客 2022.07.24 ·
414 阅读 ·
3 点赞 ·
1 评论

Qt实战案例之利用QDrag实现拖拽拼图功能.zip

发布资源 2022.07.24 ·
zip

NAOMI.zipzip

发布资源 2022.07.20 ·
zip

NAOMI代码详解

上文介绍了NAOMI: Non-Autoregressive MultiresolutionSequence Imputation(非自回归多分辨率序列填补)论文详解,链接如下:https://blog.csdn.net/didi_ya/article/details/125842598,本文介绍其代码实现。
原创
发布博客 2022.07.20 ·
265 阅读 ·
0 点赞 ·
0 评论

Visdom库visdom.server缺失的文件 static.zip

发布资源 2022.07.19 ·
zip

NAOMI: Non-Autoregressive MultiresolutionSequence Imputation(非自回归多分辨率序列填补)论文详解

从运动跟踪到物理系统动力学,缺失值填补是时空建模的一个基本问题。深度自回归模型(Deepautoregressivemodels)存在误差传播问题,这对输入长序列来说是灾难性的。本文采用一种非自回归的方法,提出了一种新的深度生成模型非自回归多分辨率填补,用于在给定任意缺失模式的情况下进行长序列的填补。NAOMI利用时空数据的多分辨率结构,采用分而治之的策略从粗粒度到细粒度递归解码。我们通过对抗性训练进一步增强了我们的模型。当对来自确定性和随机动力学系统的基准数据集进行广泛评估时。...
原创
发布博客 2022.07.18 ·
176 阅读 ·
0 点赞 ·
0 评论

BRITS: Bidirectional Recurrent Imputation for Time Series(时间序列的双向递归填补)论文详解

本文提出了一种新的基于递归神经网络(RNN)的时间序列缺失值填补方法。提出的方法直接学习双向递归动力系统中的缺失值,不需要任何特定的假设。将输入值作为RNN图的变量,在反向传播过程中进行有效更新。它具有三个优点(a)可以处理时间序列中的多个相关缺失值;(b)可以推广到具有非线性动力学基础的时间序列;©它提供了一个数据驱动的估算程序,并适用于缺少数据的一般情况。...
原创
发布博客 2022.07.15 ·
189 阅读 ·
0 点赞 ·
0 评论

基于GAN的时序缺失数据填补前言(1)——RNN介绍及pytorch代码实现

本专栏将主要介绍基于GAN的时序缺失数据填补。提起时序数据,就离不开一个神经网络——循环神经网络(Recurrent Neural Network, RNN)。RNN是一类用于处理序列数据的神经网络。RNN对具有序列特性的数据非常有效,它能挖掘数据中的时序信息。因为在介绍时序缺失数据填补,就离不开RNN的身影。本文将介绍循环神经网络RNN,并再次基础上完成基于pytorch的简单RNN代码实现,帮助更加深入了解RNN。关于循环神经网络RNN的介绍可以参考这篇文章:循环神经网络RNN入门介绍。...
原创
发布博客 2022.07.07 ·
496 阅读 ·
4 点赞 ·
3 评论

Wasserstein Slim GAIN with Gradient Penalty(WSGAIN-GP)介绍及代码实现——基于生成对抗网络的缺失数据填补

WSGAIN-GP全称Wasserstein Slim GAIN with Gradient Penalty,其目的在于减少影响普通GAN以及影响WGAN的主要警告,即因权重剪裁而产生的不良行为。WSGAIN-GP的架构与WSGAIN-CP几乎相同。WSGAIN-CP的架构可以参考文章:Wasserstein Slim GAIN with Clipping Penalty(WSGAIN-CP)介绍及代码实现——基于生成对抗网络的缺失数据填补。WSGAIN-GP的生成器与WSGAIN-CP的生成器完全相同。.
原创
发布博客 2022.07.06 ·
104 阅读 ·
0 点赞 ·
0 评论

基于生成对抗网络的缺失数据填补方法【GAIN的pytorch版本(完整版)】

发布资源 2022.07.02 ·
zip

基于生成对抗网络的缺失数据填补方法【GAIN的tensorflow版本(完整版)】

发布资源 2022.07.02 ·
zip

Wasserstein Slim GAIN with Clipping Penalty(WSGAIN-CP)介绍及代码实现——基于生成对抗网络的缺失数据填补

WSGAIN-CP全称Wasserstein Slim GAIN with Clipping Penalty,其目的在于减少影响Slim GAN的主要问题,如模式崩溃和梯度消失。WSGAIN-CP的架构与SGAIN几乎相同。SGAIN的架构可以参考文章:Slim GAIN(SGAIN)介绍及代码实现——基于生成对抗网络的缺失数据填补。WSGAIN-CP的生成器与SGAIN的生成器相同,它们甚至共享相同的损失函数,可参考前文。...
原创
发布博客 2022.07.01 ·
92 阅读 ·
0 点赞 ·
0 评论

Slim GAIN(SGAIN)介绍及代码实现——基于生成对抗网络的缺失数据填补

SGAIN网络架构如下:与GAIN的架构不同,SGAIN中没有Hint Generator,因此不会产生Hint Matrix(提示矩阵)。SGAIN的架构甚至更薄,因为生成器和判别器神经网络都只有两层,而在GAIN中它们都有三层。SGAIN在生成器和判别器的输出层使用双曲正切激活函数(又名tanh)。使用tanh而不是sigmoid激活函数的理由有两方面:SGAIN的体系结构还调用了两次判别器,一次针对真实数据,一次针对虚假数据。这使得SGAIN的架构更接近于Goodfellow等人在GAN中使用的架.
原创
发布博客 2022.06.27 ·
127 阅读 ·
0 点赞 ·
0 评论
加载更多