目录
一、WSGAIN-GP介绍
1.1 WSGAIN-GP网络架构
WSGAIN-GP全称Wasserstein Slim GAIN with Gradient Penalty,其目的在于减少影响普通GAN以及影响WGAN的主要警告,即因权重剪裁而产生的不良行为。WSGAIN-GP的架构与WSGAIN-CP几乎相同。WSGAIN-CP的架构可以参考文章:Wasserstein Slim GAIN with Clipping Penalty(WSGAIN-CP)介绍及代码实现——基于生成对抗网络的缺失数据填补。
1.2 生成器模型(Generator)
WSGAIN-GP的生成器与WSGAIN-CP的生成器完全相同。
1.3 判别器模型(Critic)
WSGAIN-GP的判别器(C)几乎与WSGAIN-CP的判别器相同。然而,由于WSGAIN-GP旨在消除因权重剪裁而可能出现的不良行为,因此没有权重剪裁。相反,为了改进训练,判别器使用了一种称为