- 博客(8)
- 收藏
- 关注
原创 Summary:Fater Rcnn
写在前面:对于目标识别领域的发展,RCNN-FAST-FATER-YOLO-SSD-YOLO9000对于rcnn和fast 二者使用selective search的算法进行图像的强硬分割,并将分割的图像作为提议选取进行cnn的网络训练。而faster进行了在原有的fast的基础上加入了rpn,现在分开来说说。RCNN对于rcnn使用svm进行分类,并使用bbox进行位
2018-02-03 13:58:09 390
转载 将自己的数据集制作成tf格式,文件批量重命名
主要参考博客:data_to_tf在进行深度学习时,如何将自己的数据制作成tf格式是要关注的第一步。结合看到的多篇博客论文,并整理成python code格式进行记录及分享。import tensorflow as tfimport osfrom PIL import Imageimport numpy as npIMAGE_HEIGHT, IMAGE_WIDTH, IMAG
2018-01-20 10:39:46 680
转载 自编码器Auto-Encoder
简介自编码器可以理解成一个试图还原原始数据输入的系统。它也是一种神经网络,他的输入和输出是一致的,它借助稀疏编码的思想,目标是使用稀疏的一些高阶特征重新组合来重构自己。特征:期望输入/输出一致;期望使用高阶特征来重构自己,而不是简单的复制主要论文:hinton-《reducing the dimensionality of data with neural networ
2017-12-19 14:09:35 987
原创 吴恩达深度学习课程笔记
1,二分类1.1规范化符号用x表示输出,y表示输出,一般x是矩阵形式xi=[xi1,xi2,......xin]^T ,按照列的形式表示训练集的规模使用m表示,表示里面有m个训练样本,形式为:{(x1,y1),(x2,y2),......(xm,ym)};使用m_train表示训练集,m_test表示测试集。在神经网络中训练集的表示方式使用矩阵的的方法:X=[x1,x2
2017-10-29 14:48:25 771
原创 支持向量机学习笔记-SVM
核心思想:在样本空间中,通过超平面的方法对样本空间进行划分,使用的是经典的线性方程的方式。W^t*X+b=0其中W是法向量,决定了超平面的方向,b是位移项。假定W^t*X+b>=1,y=1;W^t*X+b通过最小化样本空间的点数到超平面的距离进行超平面的参数确定。距离超平面最近的几个训练样本点使得
2017-10-18 19:11:19 555
原创 机器学习基础
机器学习,说白了就是对大数据进行处理及分析。这就对数据的质量提出了一定的要求,在进行算法实现之前,要进行数据清理。数据清理包括:1,分析数据,明确需求和从数据中得到的特征信息;2,缺失值处理,现实中数据并不都是完备的,3,异常值处理,判别异常并删除异常4,去重处理,设计到哈希去重和set方法去重;5,噪音处理,设计到滤波方法,傅里叶变换,短时傅里叶,fir,irr滤波器,小
2017-10-15 12:03:01 246
原创 PYTHON:dict相关操作
对于dict,形式为key:value,并且key和value可以存储各种类型的元素。1,创建dict#通过key的名称创建dict,并且每个key对应的value初始为空[]dict_full = {}for key_name_full in list(range(94)): dict_full[key_name_full] = []
2017-10-13 15:58:58 263
转载 时间序列相似性
对于两个序列来说,如果要比较两个波形的相似程度,可以使用DWT(动态时间规整)的方法。对于dwt方法,可以解决处理两个长度不一样的序列。DTW是一种衡量两个时间序列之间的相似度的方法,主要应用在语音识别领域来识别两段语音是否表示同一个单词原理:DTW通过把时间序列进行延伸和缩短,来计算两个时间序列性之间的相似性。1,两个要进行匹配的数据A=[A1,A2,...An]和B=[B1,B
2017-10-11 14:59:17 15026 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人