关于异或运算,是可以求前缀和的。还有一些异或运算的性质
0^a=a;
交换律 a^b=b^a
结合律 a^(b^c)=(a^b)^c
分配率 a^(b+c)=a^b+a^c
自反律 a^b^b=a
判断两个数是否相等 a^b=0
这个题真的学到好多
要找 al⊕al+1⊕…⊕amid=amid+1⊕amid+2⊕…⊕ar,即
0=al⊕al+1⊕…⊕amid⊕amid+1⊕amid+2⊕…⊕ar;
然后用一个sum数组保留前缀异或。
对于要求r-l+1是偶数,那么l,r一定不同奇偶。
只要找(l-1)+r同奇偶就可以了,枚举r从1-n。
1 #include <iostream> 2 using namespace std; 3 const int maxn=1<<21+5; 4 //const int maxn=1<<21; 5 int dp[2][maxn]; 6 int main() 7 { 8 int n;scanf("%d",&n); 9 dp[0][0]=1; 10 long long ans=0; 11 int num=0; 12 for(int i=1;i<=n;i++) 13 { 14 int temp;scanf("%d",&temp); 15 num=num^temp; 16 ans+=dp[i%2][num]; 17 dp[i%2][num]++; 18 19 } 20 cout <<ans<<endl; 21 return 0; 22 }
对了还有一个注意的就是左移的时候1<<21+5=1<<26;(1<<21)+5这样才对
al⊕al+1⊕…⊕amid=amid+1⊕amid+2⊕…⊕ar