浅谈树的重心

浅谈树的直径


定义:

  树上一节点最大子树的节点数最小;

性质:

  1.删除重心后所得的所有子树,节点数不超过原树的1/2,一棵树最多有两个重心;

  2.树中所有节点到重心的距离之和最小,如果有两个重心,那么他们距离之和相等;

  3.两个树通过一条边合并,新的重心在原树两个重心的路径上;

  4.树删除或添加一个叶子节点,重心最多只移动一条边;

求解:

  求解方法多种多样,分别用到不同的定义和性质:

  1.定义求解:

  siz [ i ]表示 i 节点的子树大小 dp [ i ]表示以 i 为根节点的最大子树大小,val[ i ]为i节点的点权,代码通俗易懂不过多解释了

  

inline void dfs(int now,int fa)
{
    siz[now]=val[now];
    dp[now]=0;
    for(int i=head[now];i;i=a[i].nxt)
    {
        int t=a[i].to;
        if(t==fa) continue;
        dfs(t,now);
        siz[now]+=siz[t];
        dp[now]=max(dp[now],siz[t]);
    }
    dp[now]=max(dp[now],n-dp[now]);
    if(dp[now]<dp[ans]) ans=now;
}
  2.性质求解:

  一般来说定义求解就够用了,但在某些时候性质求解更方便实用;

  根据性质2:我们可以处理出所有节点到某一节点的距离,取最小值;

  怎么求出每个节点到某一节点的距离呢?在dfs过程中向下处理是很容易的,所以我们可以先处理出所有节点到根节点的距离qwq ;

  siz [ i ]同上,f [ i ] 表示节点 i 的所有子节点到 i 的距离和,val[ i ] 同上, a [ i ].val 为边权,设定1 号节点为根节点;

  

inline void dfs1(int now,int fa,int deep)
{
    siz[now]=val[now];
    dep[now]=deep;
    for(int i=head[now];i;i=a[i].nxt)
    {
        int t=a[i].to;
        if(t==fa) continue;
        dfs1(t,now,deep+a[i].val);
        siz[now]+=siz[t];
        f[now]+=f[t]+siz[t]*a[i].val;
    }
}

 

  对于f数组的处理的理解:t的所有子节点到t的距离+now的当前子树所有节点到now的距离。

  这样就求得了根节点的距离和,我们再通过根节点递推其他节点的距离和,有如下公示:

  f [ now ] = f [ fa ] +( siz [ 根节点 ] - 2 * siz [ now ])* 边权;(now!= 根节点)

 

  理解如下:

  对于now的子节点,每个节点的距离减少了一个边权,总距离减少 siz [ now ] * 边权 ,对于非v子节点,每个节点距离增加了一个边权,总距离增加(siz[ 根 ]-siz [ now ])*边权

  

inline void dfs2(int now,int fa)
{
    if(now^root) f[now]=f[fa]+siz[1]-2*siz[now];
    if(f[now]<sum) res=now,sum=f[now];
    for(int i=head[now];i;i=a[i].nxt)
    {
        int t=a[i].to;
        if(t==fa) continue;
        dfs2(t,now); 
    }
}

  这种方法还可以优化:观察式子:显然一个节点的所有子树中,只有子节点数最多的一个可能成为重心,所以我们可以加以改进,在dfs2中只走子树节点最多的一个:

  这样复杂度整体虽然还是O(n)的,但是查询复杂度变为了O(树高)在某些题目中(下面例题中qwq)有奇效。

 

inline void dfs1(int now,int fa,int deep)
{
    siz[now]=val[now];
    dep[now]=deep;
    int maxson=-1;//新 加 
    for(int i=head[now];i;i=a[i].nxt)
    {
        int t=a[i].to;
        if(t==fa) continue;
        dfs1(t,now,deep+a[i].val);
        siz[now]+=siz[t];
        f[now]+=f[t]+siz[t]*a[i].val;
        if(siz[t]>maxson) maxson=siz[t],son[now]=t;//新 加 
    }
}
inline void dfs2(int now,int fa)
{
    if(now^1) f[now]=f[fa]+siz[1]-2*siz[now];
    if(f[now]<sum) res=now,sum=f[now];
    if(son[now]) dfs2(t,now);//改 动 
}

例题: 

  洛谷P2726

  

  第一行为N,1<N<=50000,表示树的节点数目,树的节点从1到N编号。 接下来N-1行,每行两个整数U,V,表示U与V之间有一条边。 再接下N行,每行一个正整数,其中第i行的正整数表示编号为i的节点权值为W(I),树的深度<=100

  分析:

  应该没有黑题难度,紫色差不多。

  先考虑暴力枚举x,y,那么对于每一对x,y分界都是一条树上的边。那么我们不如枚举断边,再找出重心qwq;

  先O(n)求出f [ root ] 的值,枚举断边,再通过上述第二种优化过的方法求距离和,总复杂度O(N*树高);

  对于优化的处理:由于需要断边,每次断边后最大子树可能变小,所以我们需要维护一个次大子树;

  

#include<bits/stdc++.h>
using namespace std;
#define int long long
inline int read()
{
    int x=0,f=1;
    char ch;
    for(ch=getchar();(ch<'0'||ch>'9')&&ch!='-';ch=getchar());
    if(ch=='-') f=0,ch=getchar();
    while(ch>='0'&&ch<='9'){x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
    return f?x:-x;
}
const int inf=1e18;
int n,res,cut;
int val[100010],siz[100010],f[100010],dep[100010];
int from[100010];
int son1[100010],son2[100010];
int head[100010],cnt=1;
struct point
{
    int nxt,to;
}a[100010];
inline void add(int x,int y)
{
    a[++cnt].nxt=head[x];
    a[cnt].to=y;
    head[x]=cnt;
}
inline void dfs1(int now,int fa,int deep)
{
    siz[now]=val[now];
    dep[now]=deep;
    from[now]=fa;
    for(int i=head[now];i;i=a[i].nxt)
    {
        int t=a[i].to;
        if(t==fa) continue;
        dfs1(t,now,deep+1);
        siz[now]+=siz[t];
        f[now]+=(f[t]+siz[t]);
        if(siz[t]>siz[son1[now]])
        {
            son2[now]=son1[now];
            son1[now]=t;
        }
        else if(siz[t]>siz[son2[now]])
        {
            son2[now]=t;
        }
    }
}
inline void dfs3(int now,int sum,int all,int &ans)
{
    ans=min(ans,sum);
    int t=son1[now];
    if(t==cut||siz[son2[now]]>siz[son1[now]]) t=son2[now];
    if(!t) return ;    
    if(2*siz[t]>all) dfs3(t,sum+all-2*siz[t],all,ans);
}
inline void dfs2(int now)
{
    for(int i=head[now];i;i=a[i].nxt)
    {
        int t=a[i].to;
        if(t==from[now]) continue;
        cut=t;
        for(int x=now;x;x=from[x]) siz[x]-=siz[t];
        int A=inf,B=inf;
        dfs3(1,f[1]-f[t]-dep[t]*siz[t],siz[1],A);
        dfs3(t,f[t],siz[t],B);
        res=min(res,A+B);
        for(int x=now;x;x=from[x]) siz[x]+=siz[t];
        dfs2(t);
    }
}
signed main()
{
    n=read();
    for(int x,y,i=1;i<n;++i)
    {
        x=read(),y=read();
        add(x,y);
        add(y,x);
    }
    for(int i=1;i<=n;++i)
    {
        val[i]=read();
    }
    res=inf;
    dfs1(1,0,0);
    dfs2(1);
    printf("%lld\n",res);
return 0;
}

 

 

 

  

转载于:https://www.cnblogs.com/knife-rose/p/11258403.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值