树的重心。

本文介绍了树的重心定义,即树中使得删除该节点后最大连通块节点数最小的节点。阐述了树重心的性质,包括重心到各点距离和的最小性以及在连接两棵树时的位置关系。此外,提供了使用DFS算法求解树重心的代码示例,并给出了相关题目链接,如POJ1655和luoguP1364,帮助读者理解和应用树的重心概念。
摘要由CSDN通过智能技术生成

一、树重心的定义

对于树上的每一个点,以此节点为根时计算其所有子树中最大的子树节点数,这个值最小的点就是这棵树的重心。说通俗点就是,删除此结点后,剩余连通块的结点数的最大值得到最小。

二、性质

  1. 以树的重心为根时,所有子树的大小都不超过整棵树大小的一半。(充分必要)
  2. 树中所有点到某个点的距离和中,到重心的距离和是最小的;如果有两个重心,那么到它们的距离和一样。
  3. 把两棵树通过一条边相连得到一棵新的树,那么新的树的重心在连接原来两棵树的重心的路径上。
  4. 当有两个重心时,树的结点数为偶数,并且这两个重心通过一条边直接相连。删除两个重心连的边时,所得到的两个连通块大小相等。
  5. 在一棵树上添加或删除一个叶子,那么它的重心最多只移动一条边的距离

2.dfs求重心

代码如下(示例):

int dfs(int o, int fa) {
    int temp = 0;
    int sum = 0;
    for (int i = he[o]; i != -1; i = e[i].nxt) {
        int no = e[i].to;
        if (no == fa) continue;
        int num = dfs(no, o);
        temp = max(temp, num);
        sum += num;
    }
    temp = max(temp, n - sum - 1);
    nums[o] = temp;
    if(temp <= n / 2) ans.push_back(o);
    return sum + 1;
}

POJ 1655 Balancing Art
luoguP1364 医院设置
CodeForces 1406C Link Cut Centroids

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值