题目描述 Description
Z小镇是一个景色宜人的地方,吸引来自各地的观光客来此旅游观光。 Z小镇附近共有 N(1<N≤500)个景点(编号为1,2,3,…,N),这些景点被M(0<M≤5000)条道路连接着,所有道路都是双向的,两个景点之间可能有多条道路。也许是为了保护该地的旅游资源,Z小镇有个奇怪的规定,就是对于一条给定的公路Ri,任何在该公路上行驶的车辆速度必须为Vi。频繁的改变速度使得游客们很不舒服,因此大家从一个景点前往另一个景点的时候,都希望选择行使过程中最大速度和最小速度的比尽可能小的路线,也就是所谓最舒适的路线。
输入描述 Input Description
第一行包含两个正整数,N和M。 接下来的M行每行包含三个正整数:x,y和v(1≤x,y≤N,0 最后一行包含两个正整数s,t,表示想知道从景点s到景点t最大最小速度比最小的路径。s和t不可能相同。
输出描述 Output Description
如果景点s到景点t没有路径,输出“IMPOSSIBLE”。否则输出一个数,表示最小的速度比。如果需要,输出一个既约分数。
样例输入 Sample Input
样例1 4 2 1 2 1 3 4 2 1 4 样例2 3 3 1 2 10 1 2 5 2 3 8 1 3 样例3 3 2 1 2 2 2 3 4 1 3
样例输出 Sample Output
样例1 IMPOSSIBLE 样例2 5/4 样例3 2
数据范围及提示 Data Size & Hint
N(1<N≤500) M(0<M≤5000) Vi在int范围内
简单的并查集
把边权按从小到大的顺序排好序枚举每一条边,把这条边的边权作为ans_max,接下来从这条边开始按顺序(从大到小)枚举每一条比它小的边,并且把这条边的两端点划分到一个联通块中,并且判断起点和终点是否在同一个联通块中,如果在同一个联通块中,那么当前枚举到的边的权值就是ans_min,然后更新当前最优解即可。
原理:枚举、贪心,因为我们要求ans_max与ans_min的最小比值,ans_max与ans_min越接近肯定是越好的。所以我们枚举ans_max,这样就可以把ans_max当成常数,那么ans_min的值一定是越大越好(当然,它不可能大过ans_max),所以我们从当前枚举到的边开始,每次加一条略小的边进入,当S与T第一次联通时,ans_min的值是最大的,那么就能保证他们的比值是当前ans_max下最小的。
时间复杂度:o(n^2logn)空间复杂度:o(n)
1 #include<iostream> 2 #include<cstdio> 3 #include<cstring> 4 #include<algorithm> 5 #include<stdlib.h> 6 #include<cmath> 7 using namespace std; 8 #define inf 1<<30 9 #define N 5006 10 并查集///// 11 #define M 506 12 int fa[M]; 13 void init(){ 14 for(int i=0;i<M;i++){ 15 fa[i]=i; 16 } 17 } 18 int find(int x){ 19 return fa[x]==x?x:fa[x]=find(fa[x]); 20 } 21 void merge(int x,int y){ 22 int root1=find(x); 23 int root2=find(y); 24 if(root1==root2){ 25 return; 26 } 27 fa[x]=y; 28 } 29 并查集///// 30 int n,m; 31 struct Node{ 32 int a,b,v; 33 }node[N]; 34 bool cmp(Node x,Node y){ 35 return x.v<y.v; 36 } 37 38 int gcd(int x,int y){ 39 return y==0?x:gcd(y,x%y); 40 } 41 42 int main() 43 { 44 while(scanf("%d%d",&n,&m)==2){ 45 for(int i=0;i<m;i++) scanf("%d%d%d",&node[i].a,&node[i].b,&node[i].v); 46 sort(node,node+m,cmp); 47 int _max=inf; 48 int _min=1; 49 int st,ed; 50 scanf("%d%d",&st,&ed); 51 for(int i=0;i<m;i++){ 52 init(); 53 for(int j=i;j>=0;j--){ 54 merge(node[j].a,node[j].b); 55 if(find(st)==find(ed)){ 56 if( (_max*1.0/_min) > (node[i].v*1.0/node[j].v) ){ 57 _max=node[i].v; 58 _min=node[j].v; 59 //printf("===%d %d\n",_max,_min); 60 } 61 break; 62 } 63 } 64 } 65 //printf("---%d %d\n",_max,_min); 66 int r=gcd(_max,_min); 67 if(_max==inf && _min==1){ 68 printf("IMPOSSIBLE\n"); 69 continue; 70 } 71 _max/=r; 72 _min/=r; 73 if(_min==1){ 74 printf("%d\n",_max); 75 } 76 else{ 77 printf("%d/%d\n",_max/r,_min/r); 78 } 79 80 } 81 return 0; 82 }