流量分类
袁赛因不花
这个作者很懒,什么都没留下…
展开
-
基于公共知识和一次学习的多任务流量分类
写在前面:本文翻译供个人研究学习之用,不保证严谨与准确github链接:https://github.com/WithHades/network_traffic_classification_paper本文原文:Sun, H., Xiao, Y., Wang, J., Wang, J., Qi, Q. I., Liao, J., & Liu, X. (2019). Common Knowledge Based and One-Shot Learning Enabled Multi-Task T翻译 2020-07-04 18:40:13 · 507 阅读 · 0 评论 -
基于深度生成模型的半监督网络流量分类
写在前面:本文翻译供个人研究学习之用,不保证严谨与准确github链接:https://github.com/WithHades/network_traffic_classification_paper本文原文:Li, T., Chen, S., Yao, Z., Chen, X., & Yang, J. (2018). Semi-supervised network traffic classification using deep generative models. 2018 14th翻译 2020-06-26 12:46:48 · 822 阅读 · 0 评论 -
网络流量分类中的多任务学习
写在前面:本文翻译供个人研究学习之用,不保证严谨与准确github链接:https://github.com/WithHades/network_traffic_classification_paper本文原文:S. Rezaei and X. Liu, “Multitask learning for network traffic classification”, arXiv:1906.05248, 2019文章目录网络流量分类中的多任务学习I. 介绍II. 相关工作III. 深度学习背景A. 卷翻译 2020-06-25 10:29:27 · 1060 阅读 · 0 评论 -
基于迁移学习的网络流量分类
文章目录基于迁移学习的网络流量分类1. 介绍2. 相关工作3. 问题表述4. 方法5. 实验和分析5.1 数据集5.2 实验设置5.3 实验结果6. 结论和未来工作基于迁移学习的网络流量分类摘要 用于流量分类的机器学习模型假设训练数据和测试数据具有独立的相同分布。然而,在实际的流量分类中,由于流量特征的变化,这一假设可能并不成立。由现有数据训练的模型在对新的网络流进行分类时将是无效的。本文提出了一个不作上述假设的迁移学习模型。在迁移学习模型中,采用最大熵模型作为基本分类器。为了检验该方法的有效性,翻译 2020-06-24 09:38:45 · 2127 阅读 · 2 评论 -
基于卷积和递归神经网络的物联网流量分类器
基于卷积和递归神经网络的物联网流量分类器基于卷积和递归神经网络的物联网流量分类器I. 介绍II. 相关工作III. 工作描述A. 选择数据集B. 模型描述IV. 结果A. 网络架构的影响B. 特征的影响C. 时间序列长度的影响V. 结论基于卷积和递归神经网络的物联网流量分类器摘要 网络流量分类器(NTC)是当前网络监控系统的重要组成部分,它的任务是了解通信流(如HTTP和SIP)当前使用的网络服务。该检测基于与通信流相关联的多个特征,例如,源端口和目标端口以及每个包传输的字节。NTC很重要,因为只翻译 2020-06-23 08:26:22 · 1776 阅读 · 0 评论 -
基于深度学习的SDN家庭网关加密网络流量分类
基于深度学习的SDN家庭网关加密网络流量分类基于深度学习的SDN家庭网关加密网络流量分类I. 介绍II. 相关工作III. 应用感知SDN家庭网关框架综述IV. 数据包预处理A. 预处理包字节向量B. 预处理数据包字节矩阵V. 基于深度学习的加密数据分类器(DATANET)设计A. 基于MLP的数据网B. 基于数据网的SAEC. 基于数据网的CNNVI. 评估和实验结果A. 实验设置B. 创建数据网C. 数据网分类精度D. 计算性能VII. 总结基于深度学习的SDN家庭网关加密网络流量分类摘要 智翻译 2020-06-22 09:56:47 · 1986 阅读 · 0 评论 -
基于深度学习的网络加密流量分类与入侵检测框架
基于深度学习的网络加密流量分类与入侵检测框架基于深度学习的网络加密流量分类与入侵检测框架I. 介绍II. DFR框架A. 预处理过程B. DFR过程1. 基于一维CNN的DFR分类器2. 基于LSTM的DFR分类器3. 基于SAE的DFR分类器4. 选择与保存III. 评估A. 实验装置1. 评估数据集2. 实验设置3. 评价指标B. 实验结果1. 加密流量分类效率2. 入侵检测效率IV. 结论基于深度学习的网络加密流量分类与入侵检测框架摘要 随着网络流量多样性的迅速发展,对网络流量的理解变得更加翻译 2020-06-20 21:43:27 · 5416 阅读 · 2 评论 -
机器学习在网络流量分类中的应用
I. 介绍A. 相关工作B. 本文贡献C. 本文结构II. 背景A. 机器学习介绍1. 数据收集2. 特征提取FE3.特征降维FR和特征选择FS4. 算法选择和模型结构5. 分类模型验证B. 流量分类1. IP流定义2. 有效载荷检测3. 基于统计的技术4. 行为技术5. 机器学习技术III. 方法IV.数据收集A. 网络环境B. 数据测量C. 标注任务D. 讨论V. 特征提取A. 基于统计的特征B. 基于图形的特征C...翻译 2020-06-20 11:24:06 · 9890 阅读 · 3 评论