P1102 A-B 数对
题目描述
出题是一件痛苦的事情!
相同的题目看多了也会有审美疲劳,于是我舍弃了大家所熟悉的 A+B Problem,改用 A-B 了哈哈!
好吧,题目是这样的:给出一串数以及一个数字 C C C,要求计算出所有 A − B = C A - B = C A−B=C的数对的个数(不同位置的数字一样的数对算不同的数对)。
输入格式
输入共两行。
第一行,两个整数 N , C N, C N,C。
第二行, N N N 个整数,作为要求处理的那串数。
输出格式
一行,表示该串数中包含的满足 A − B = C A - B = C A−B=C 的数对的个数。
输入输出样例
输入 #1
4 1
1 1 2 3
输出 #1
3
说明/提示
对于 75 % 75\% 75% 的数据, 1 ≤ N ≤ 2000 1 \leq N \leq 2000 1≤N≤2000。
对于 100 % 100\% 100% 的数据, 1 ≤ N ≤ 2 × 1 0 5 1 \leq N \leq 2 \times 10^5 1≤N≤2×105。
保证所有输入数据都在 32 32 32 位带符号整数范围内。
2017/4/29 新添数据两组
代码
方法一
使用map找出记录,相同的数,并在之后相乘
#include <algorithm>
#include <iostream>
#include <cstdio>
#include <map>
using namespace std;
typedef long long ll;
const int N = 2e5;
int n, c;
int a[N + 5];
ll ans;
map<int, int> mp;
int main() {
scanf("%d%d", &n, &c);
for (int i = 0; i < n; i++) {
scanf("%d", a + i);
mp[a[i]]++;
}
sort(a, a + n);
for (int i = n - 1; i > 1; i--)
if (mp[a[i]] && mp[a[i] - c]) {
ans += (ll)mp[a[i]] * mp[a[i] - c];
mp[a[i]] = 0;
}
printf("%lld\n", ans);
return 0;
}
方法二
使用upper_bound
和lower_bound
找出相同数字的个数。
#include <algorithm>
#include <iostream>
#include <cstdio>
using namespace std;
typedef long long ll;
const int N = 2e5;
ll n, c;
ll a[N + 5];
ll ans;
int main() {
scanf("%lld%lld", &n, &c);
for (int i = 0; i < n; i++)
scanf("%lld", a + i);
sort(a, a + n);
for (int i = 0; i < n; i++) {
ll num = (upper_bound(a, a + n, a[i] + c) - a) - (lower_bound(a, a + n, a[i] + c) - a);
ans += num;
}
printf("%lld\n", ans);
return 0;
}