sklearn中的朴素贝叶斯模型及其应用

1.使用朴素贝叶斯模型对iris数据集进行花分类

#高斯分布型

from sklearn.datasets import load_iris
iris = load_iris()
from sklearn.naive_bayes import GaussianNB
gnb = GaussianNB()  #建立高斯分布模型
pred = gnb.fit(iris.data,iris.target)  #模型训练
y_pred = pred.predict(iris.data)   #分类预测
print(iris.data.shape[0],(iris.target != y_pred).sum())

运行结果:

#多项式型

from sklearn import datasets
iris = datasets.load_iris()
from sklearn.naive_bayes import MultinomialNB  
gnb = MultinomialNB()   #构造多项式分布模型
pred = gnb.fit(iris.data,iris.target)  #模型训练
y_pred = pred.predict(iris.data)   #分类预测
print(iris.data.shape[0],(iris.target != y_pred).sum())

运行结果:

#伯努利型

from sklearn import datasets
iris = datasets.load_iris()
from sklearn.naive_bayes import BernoulliNB  
gnb = BernoulliNB()   #构造伯努利模型
pred = gnb.fit(iris.data,iris.target)  #模型训练
y_pred = pred.predict(iris.data)   #分类预测
print(iris.data.shape[0],(iris.target != y_pred).sum())

运行结果:

2.使用sklearn.model_selection.cross_val_score(),对模型进行验证。

#高斯模型验证

from sklearn.naive_bayes import GaussianNB
from sklearn.model_selection  import cross_val_score
gnb = GaussianNB()
scores = cross_val_score(gnb,iris.data,iris.target,cv=10)  #对高斯模型进行验证
print("Accuracy:%.3f"%scores.mean())

运行结果:

#多项式模型验证

from sklearn.naive_bayes import MultinomialNB 
from sklearn.model_selection  import cross_val_score
gnb = MultinomialNB ()
scores = cross_val_score(gnb,iris.data,iris.target,cv=10)  #对多项式分布模型进行验证
print("Accuracy:%.3f"%scores.mean())

运行结果:

#伯努利模型验证

from sklearn.naive_bayes import BernoulliNB
from sklearn.model_selection  import cross_val_score
gnb = BernoulliNB()
scores = cross_val_score(gnb,iris.data,iris.target,cv=10)  #对伯努利模型进行验证
print("Accuracy:%.3f"%scores.mean())

运行结果:

3. 垃圾邮件分类

数据准备:

  • 用csv读取邮件数据,分解出邮件类别及邮件内容。
  • 对邮件内容进行预处理:去掉长度小于3的词,去掉没有语义的词等

尝试使用nltk库:

pip install nltk

import nltk

nltk.download

不成功:就使用词频统计的处理方法

(由于下载nltk库不成功5次,现将源代码先保存为一份,故没有运行截图)

代码1

import nltk
nltk.download()

text = '''ham	"Go until jurong point, crazy.. Available only in bugis n great world la e buffet... Cine there got amore wat..."'''
import nltk
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
def preprocessing(text):
    #text=text.decode("utf-8")
    tokens=[word for sent in nltk.sent_tokenize(text) for word in nltk.word in nltk.word_tokenize(sent)]
    stops=stopwords.words('english')
    tokens=[token for token in tokens if token not in stops]
    tokens=[token.lower() for token in tokens if len(token)>=3]
    lmtzr= WordNetLemmatizer()
    tokens=[lmtzr.lemmatizer(token) for token in tokens]
    preprocessed_text=' '.join(tokens)
    return preprocessed_text

preprocessing(text)

  

 代码2

import csv
file_path=r'F:\Pycharm\11.22\SMSSpamCollectionjsn.txt'
sms=open(file_path,'r',encoding='utf-8')
sms_data=[]
sms_label=[]
csv_reader=csv.reader(sms,delimiter='\t')
for line in csv_reader:
    sms_label.append(line[0])
    sms_data.append(line[1])
sms.close()
print(len(sms_label))
sms_label

  

代码3

def preprocessing(text):
    preprocessing_text = text
    return preprocessed_text

import csv
file_path=r'F:\Pycharm\11.22\SMSSpamCollection'
sms=open(file_path,'r',encoding='utf-8')
sms_data=[]
sms_label=[]
csv_reader=csv.reader(sms,delimiter='\t')
for line in csv_reader:
    sms_label.append(line[0])
    sms_data.append(preprocessing(line[1]))
sms.close()
sms_data

  

代码4

from sklearn.model_selection import train_test_split
x_train, x_text, y_train, y_test = train_test_split(sms_data, sms_label, test_size=0.3, random_state=0, stratify=sms_label)

x_train
x_test

from sklearn.naive_bayes import MultinomialNB
clf=MultinomialNB().fit(x_train,y_train)

  

代码5

x_train

  

代码6

x_test

  

转载于:https://www.cnblogs.com/MIS-67/p/9999687.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值