1.9. 朴素贝叶斯
朴素贝叶斯方法是基于贝叶斯定理的一组有监督学习算法,即“简单”地假设每对特征之间相互独立。 给定一个类别
和一个从
到
的相关的特征向量, 贝叶斯定理阐述了以下关系:
使用简单(naive)的假设-每对特征之间都相互独立:
对于所有的 :i 都成立,这个关系式可以简化为
由于在给定的输入中
是一个常量,我们使用下面的分类规则:
我们可以使用最大后验概率(Maximum A Posteriori, MAP) 来估计
和
; 前者是训练集中类别
1.9. 朴素贝叶斯
朴素贝叶斯方法是基于贝叶斯定理的一组有监督学习算法,即“简单”地假设每对特征之间相互独立。 给定一个类别
和一个从
到
的相关的特征向量, 贝叶斯定理阐述了以下关系:
使用简单(naive)的假设-每对特征之间都相互独立:
对于所有的 :i 都成立,这个关系式可以简化为
由于在给定的输入中
是一个常量,我们使用下面的分类规则:
我们可以使用最大后验概率(Maximum A Posteriori, MAP) 来估计
和
; 前者是训练集中类别