基于sklearn的朴素贝叶斯_1.9. 朴素贝叶斯

本文详细介绍了scikit-learn库中的朴素贝叶斯算法,包括高斯朴素贝叶斯、多项分布朴素贝叶斯、补充朴素贝叶斯和伯努利朴素贝叶斯。通过实例展示了如何使用这些算法进行分类,并讨论了它们在不同情况下的适用性和优势。
摘要由CSDN通过智能技术生成

1.9. 朴素贝叶斯

朴素贝叶斯方法是基于贝叶斯定理的一组有监督学习算法,即“简单”地假设每对特征之间相互独立。 给定一个类别

e60097198c11c1ebd56ba6c9a2f4dba6.png 和一个从

a68b34cafd55a18a1767ba0452ad9b60.png

85b2db8bc5a42333480b8135b1be0cef.png 的相关的特征向量, 贝叶斯定理阐述了以下关系:

6c453517af4214f00080f0c5b76f8f0e.png

使用简单(naive)的假设-每对特征之间都相互独立:

729d2381a167372982b0c4e90a80ad39.png

对于所有的 :i 都成立,这个关系式可以简化为

b6911fa1dcd1d8b2b30becb7c5597cd3.png

由于在给定的输入中

a48d32e7accfabe4490407803bd75f3e.png 是一个常量,我们使用下面的分类规则:

69032f7abea06cfe5e7864bdddb98f9d.png

我们可以使用最大后验概率(Maximum A Posteriori, MAP) 来估计

7d413af9d63027dc9ecdf1cf7a478a35.png

e74eeca68769e01c995377dde3d3d288.png ; 前者是训练集中类别

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值