状态压缩动态规划(简称状压dp)是另一类非常典型的动态规划,通常使用在NP问题的小规模求解中,虽然是指数级别的复杂度,但速度比搜索快,其思想非常值得借鉴。
为了更好的理解状压dp,首先介绍位运算相关的知识。
1.’&’符号,x&y,会将两个十进制数在二进制下进行与运算,然后返回其十进制下的值。例如3(11)&2(10)=2(10)。
2.’|’符号,x|y,会将两个十进制数在二进制下进行或运算,然后返回其十进制下的值。例如3(11)|2(10)=3(11)。
3.’^’符号,x^y,会将两个十进制数在二进制下进行异或运算,然后返回其十进制下的值。例如3(11)^2(10)=1(01)。
4.’<<’符号,左移操作,x<<2,将x在二进制下的每一位向左移动两位,最右边用0填充,x<<2相当于让x乘以4。相应的,’>>’是右移操作,x>>1相当于给x/2,去掉x二进制下的最有一位。
这四种运算在状压dp中有着广泛的应用,常见的应用如下:
1.判断一个数字x二进制下第i位是不是等于1。
方法:if ( ( ( 1 << ( i - 1 ) ) & x ) > 0)
将1左移i-1位,相当于制造了一个只有第i位上是1,其他位上都是0的二进制数。然后与x做与运算,如果结果>0,说明x第i位上是1,反之则是0。
2.将一个数字x二进制下第i位更改成1。
方法:x = x | ( 1<<(i-1) )
证明方法与1类似,此处不再重复证明。
3.把一个数字二进制下最靠右的第一个1去掉。
方法:x=x&(x-1)
感兴趣的读者可以自行证明。
下面来一道状态压缩的例题(然而弱鸡的我例题都做了好久。。。)
https://www.luogu.org/problemnew/show/1896
整理一下思路。
所谓的状态压缩,我个人认为是用时间换方便,将所有情况汇集在一个数里,本来是要用多个维度才能表示的情况换作一个维度。
可能一道题有多种状态,而每种状态都需要我们去讨论,而如果为每个状态都单独开一个数组来存储状态,那就GG了,根本存不下。
所以我们就把10进制的转换为二进制来存储,二进制每一位0,1都可以表示选择与否,一个二进制数就可以完成对多种状态的存储。
然而对与时间复杂度却是指数级的,所以对于数据范围大的,这个就无法使用了。
来波代码
1 #include<cstdio> 2 #include<cstring> 3 using namespace std; 4 long long f[100][900][1000];//f[行数][国王个数][状态]; 5 int way[105]; 6 int num[105]; 7 int find(int n,int all) 8 { 9 int j=0; 10 for(int i=0;i<=all;i++) 11 { 12 if((i&(i<<1))==0&&(i&(i>>1))==0) 13 { 14 j++; 15 way[j]=i; 16 int x=i; 17 int nn=0; 18 while(x>0) 19 { 20 nn++; 21 x=x-(x&(-x)); 22 //每执行一次这项操作,会消去x作为二进制数时最右端的一个1。 23 } 24 num[j]=nn; 25 } 26 } 27 return j; 28 } 29 bool search(int s2,int s1)//判断两种状态是否冲突。 30 { 31 if((s2&(s1<<1))==0&&(s1&(s2<<1))==0&&(s1&s2)==0) 32 return true; 33 else 34 return false; 35 } 36 int main() 37 { 38 int n,k1; 39 scanf("%d%d",&n,&k1); 40 int all=1<<n; 41 all--;//总共存在的状态数 42 int nway=find(n,all);//找出一行中不会冲突的最多方案的个数 43 for(int i=1;i<=nway;i++) 44 { 45 f[1][num[i]][way[i]]=1; 46 } 47 for(int i=2;i<=n;i++)//行数 48 for(int j=1;j<=nway;j++)//上一行状态 49 for(int t=1;t<=nway;t++)//这一行状态 50 { 51 if(search(way[j],way[t])) 52 { 53 for(int g=num[t];g<=k1;g++) 54 { 55 f[i][g][way[t]]+=f[i-1][g-num[t]][way[j]]; 56 //状态转移方程。 57 } 58 } 59 } 60 long long tot=0ll;//记住要使用long long型不然就像我一样交了半天都不对。 61 for(int i=1;i<=nway;i++) 62 { 63 tot+=f[n][k1][way[i]]; 64 } 65 printf("%lld",tot); 66 return 0; 67 }