- 博客(9)
- 收藏
- 关注
转载 第一次个人编程作业
软工实践第一次个人编程作业1 Github [Github](https://github.com/SugarChl/031702246)2 PSP****PSP2.1********Personal Software Process Stages********预估耗时(分钟)********实际耗时(分钟)****Planning计划6...
2019-09-25 19:10:00 143
转载 软工实践第一次作业
软工实践第一次作业1 自我介绍 031702246;我是陈鸿立;我的爱好是绘画;我觉得教工食堂的饭菜最好吃,尤其是米饭。不过只有在晚上才对学生开放;花店不开了,花继续开2.1 回想一下你初入大学时对计算机专业的畅想2.1.1 当初你是如何做出选择计算机专业的决定的?我从初中开始就对电子信息之类的专业感兴趣,那时候就自学了C语言。在高考之后报志愿时,由于我是特殊类招生,感...
2019-09-08 16:15:00 179
转载 XGB算法梳理
1.CART树 1.1原理 Classification And Regression Tree(CART)是决策树的一种,并且是非常重要的决策树,属于Top Ten Machine Learning Algorithm。顾名思义,CART算法既可以用于创建分类树(Classification Tree),也可以用于创建回归树(Regression Tree)、模型树(M...
2018-12-24 15:35:00 440
转载 GBDT算法梳理
1.GBDT(Gradient Boosting Decision Tree)思想 Boosting : 给定初始训练数据,由此训练出第一个基学习器; 根据基学习器的表现对样本进行调整,在之前学习器做错的样本上投入更多关注; 用调整后的样本,训练下一个基学习器; 重复上述过程 T 次,将 T 个学习器加权结合。 Gradient ...
2018-12-21 20:16:00 261
转载 随机森林算法基础梳理
1.集成学习概念 在机器学习的有监督学习算法中,我们的目标是学习出一个稳定的且在各个方面表现都较好的模型,但实际情况往往不这么理想,有时我们只能得到多个有偏好的模型(弱监督模型,在某些方面表现的比较好)。集成学习就是组合这里的多个弱监督模型以期得到一个更好更全面的强监督模型,集成学习潜在的思想是即便某一个弱分类器得到了错误的预测,其他的弱分类器也可以将错误纠正回来。集成方法是将...
2018-12-19 21:11:00 909
转载 决策树基础梳理
1.信息论基础 1.1.熵 熵是信息的关键度量,通常指一条信息中需要传输或者存储一个信号的平均比特数。熵衡量了预测随机变量的不确定度,不确定性越大熵越大。 针对随机变量XX,其信息熵的定义如下: 信息熵是信源编码中,压缩率的下限。当我们使用少于信息熵的信息量做编码,那么一定有信息的损失。 1.2.联合熵 联合熵是一集...
2018-12-14 22:10:00 658
转载 逻辑回归基础梳理
1.逻辑回归 逻辑回归就是这样的一个过程:面对一个回归或者分类问题,建立代价函数,然后通过优化方法迭代求解出最优的模型参数,然后测试验证我们这个求解的模型的好坏。Logistic回归虽然名字里带“回归”,但是它实际上是一种分类方法,主要用于两分类问题(即输出只有两种,分别代表两个类别)回归模型中,y是一个定性变量,比如y=0或1,logistic方法主要应用于研究某些事件发...
2018-12-11 14:37:00 505
转载 线性回归基础梳理
一.概念1.损失函数 损失函数(Loss function)是用来估量你模型的预测值f(x)f(x)与真实值YY的不一致程度,它是一个非负实值函数,通常用L(Y,f(x))L(Y,f(x))来表示。 常见的损失误差有五种: 1. 铰链损失(Hinge Loss):主要用于支持向量机(SVM) 中; 2. 互熵损失 (Cross Entropy...
2018-12-10 13:39:00 169
转载 [傻瓜式一步到位] 阿里云服务器Centos上部署一个Flask项目
网络上关于flask部署Centos的教程有挺多,不过也很杂乱。在我第一次将flask上传到centos服务器中遇到了不少问题,也费了挺大的劲。在参考了一些教程,并综合了几个教程之后才将flask项目部署好。所以我想把这一过程记录详细地下来,也方便零基础新手们参考。一般来说,将本文的全部过程执行下来,就可以成功地部署好flask了。我入手的服务器是阿里云...
2018-08-18 17:29:00 376
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人