Single node只有driver,没有worker,driver扮演者master和worker的角色。Single node适用于小数据量或非分布式工作负载的情景,如单节点机器学习库。
Multi node既有driver,也有worker,可以配置最小worker数量和最大worker数量。Multi node适用于具有分布式负载的大型作业。
Single node和Multi node只能在创建的时候选择,后续不能更改。
Access Mode:
Single User:只允许一个用户访问。支持python、sql、R、scala。
Shared:允许多个用户访问,用户之间数据隔离、环境隔离。只支持python和sql。
No Isolation Shared:允许多个用户访问,支持python、sql、R、scala。没有隔离,一个用户的操作可能会影响另外一个用户。
databricks的runtime包括Standard和ML。Standard包括Spark、Ubuntu、GPU、Delta Lake等。
ML除了包含Standard的所有内容外,还提供目前流行的机器学习框架。如PyTorch、TensorFlow等,可以用于机器学习。
Enable autoscaling:当选择Enable autoscaling后,databricks会根据工作负载,在设置的最小wokers和最大workers之间选择合适数量的worker。Enable autoscaling对于流处理具有局限性,因此不建议在流处理中使用这个。流处理可以使用Delta Live Table。
你还可以设置cluster自动停止,这是省钱的好办法。可以设置cluster多长时间处于不活动状态时停止这个cluster。默认值为120分钟,可以根据实际情况调整,最小10分钟,最大43200分钟。
可以在这里设置Spark config,设置环境变量,log的目录,初始化脚本。如果想在启动cluster的时候初始化环境,可以添加初始化脚本。
可以在Event log这里看到cluster的日志,如果cluster出现问题,可以在这里查找原因。