[JSOI2007]字符加密Cipher

Description
喜欢钻研问题的JS同学,最近又迷上了对加密方法的思考。一天,他突然想出了一种他认为是终极的加密办法:把需要加密的信息排成一圈,显然,它们有很多种不同的读法。例如下图,可以读作:
见原题
JSOI07 SOI07J OI07JS I07JSO 07JSOI 7JSOI0
把它们按照字符串的大小排序:
07JSOI 7JSOI0 I07JSO JSOI07 OI07JS SOI07J
读出最后一列字符:I0O7SJ,就是加密后的字符串(其实这个加密手段实在很容易破解,鉴于这是突然想出来的,那就^^)。但是,如果想加密的字符串实在太长,你能写一个程序完成这个任务吗?

Input
输入文件包含一行,欲加密的字符串。注意字符串的内容不一定是字母、数字,也可以是符号等。

Output
输出一行,为加密后的字符串。

Sample Input
JSOI07

Sample Output
I0O7SJ

HINT
对于100%的数据字符串的长度不超过100000。

Source

思路
后缀数组,先破环成链,注意需要延长一倍,然后对后缀进行排序。这样就求出了序列的每一个开始位置,将开始位置的前一个字符按顺序输出即可。

代码

#include <cstdio>
#include <cstring>
#include <algorithm>

const int maxn=400000;

struct suffix_array//后缀数组的模板
{
  int sa[maxn+10],rank[maxn+10],tmp[maxn+10],sum[maxn+10];

  int suffix_sort(char* s)
  {
    int* x=rank;
    int* y=tmp;
    int n=strlen(s+1),m=127;
    for(register int i=1; i<=n; ++i)
      {
        x[i]=s[i];
        y[i]=i;
        ++sum[x[i]];
      }
    for(register int i=1; i<=m; ++i)
      {
        sum[i]+=sum[i-1];
      }
    for(register int i=n; i; --i)
      {
        sa[sum[x[i]]]=i;
        --sum[x[i]];
      }
    int len=1,p=1;
    while(p<n)
      {
        m=p;
        p=0;
        for(register int i=n-len+1; i<=n; ++i)
          {
            ++p;
            y[p]=i;
          }
        for(register int i=1; i<=n; ++i)
          {
            if(sa[i]-len>0)
              {
                ++p;
                y[p]=sa[i]-len;
              }
          }
        for(register int i=0; i<=m; ++i)
          {
            sum[i]=0;
          }
        for(register int i=1; i<=n; ++i)
          {
            ++sum[x[y[i]]];
          }
        for(register int i=1; i<=m; ++i)
          {
            sum[i]+=sum[i-1];
          }
        for(register int i=n; i; i--)
          {
            sa[sum[x[y[i]]]]=y[i];
            --sum[x[y[i]]];
          }
        std::swap(x,y);
        p=1;
        x[sa[1]]=1;
        for(register int i=2; i<=n; ++i)
          {
            if(!((y[sa[i-1]]==y[sa[i]])&&(y[sa[i-1]+len]==y[sa[i]+len])))
              {
                ++p;
              }
            x[sa[i]]=p;
          }
        len<<=1;
      }
    p=0;
    for(int i=1; i<=n; ++i)
      {
        ++p;
        rank[sa[i]]=p;
      }
    return 0;
  }

  int work(char* s)
  {
    int n=strlen(s+1);
    for(register int i=1; i<=n; ++i)//将s扩大一倍
      {
        s[i+n]=s[i];
      }
    suffix_sort(s);//对s的后缀进行排序
    for(register int i=1; i<=n<<1; ++i)//输出答案
      {
        int x=sa[i]-1;//这一个串的末尾字符就是这个串开头字符的前一个字符
        if(x<n)
          {
            if(!x)
              {
                x=n;
              }
            putchar(s[x]);
          }
      }
    return 0;
  }
};

suffix_array s;
char ch[maxn+10];

int main()
{
  scanf("%s",ch+1);
  s.work(ch);
  return 0;
}

转载于:https://www.cnblogs.com/Canopus-wym/p/10376278.html

根据引用[1],dp[u][j]表示在u子树中选取恰好j个人时能获得的最大价值。而根据引用,该问题的时间复杂度为O(log2​104×nm)。 对于洛谷P2143 [JSOI2010] 巨额奖金问题,我们可以使用动态规划来解决。具体步骤如下: 1. 首先,我们需要构建一棵树来表示员工之间的关系。树的根节点表示公司的总经理,其他节点表示员工。每个节点都有一个权值,表示该员工的奖金金额。 2. 接下来,我们可以使用动态规划来计算每个节点的dp值。对于每个节点u,我们可以考虑两种情况: - 如果选择节点u,则dp[u][j] = dp[v][j-1] + value[u],其中v是u的子节点,value[u]表示节点u的奖金金额。 - 如果不选择节点u,则dp[u][j] = max(dp[v][j]),其中v是u的子节点。 3. 最后,我们可以通过遍历树的所有节点,计算出dp[u][j]的最大值,即为所求的巨额奖金。 下面是一个示例代码,演示了如何使用动态规划来解决洛谷P2143 [JSOI2010] 巨额奖金问题: ```python # 构建树的数据结构 class Node: def __init__(self, value): self.value = value self.children = [] # 动态规划求解最大奖金 def max_bonus(root, j): dp = [[0] * (j+1) for _ in range(len(root)+1)] def dfs(node): if not node: return for child in node.children: dfs(child) for k in range(j, 0, -1): dp[node.value][k] = max(dp[node.value][k], dp[node.value][k-1] + node.value) for child in node.children: for k in range(j, 0, -1): for l in range(k-1, -1, -1): dp[node.value][k] = max(dp[node.value][k], dp[node.value][k-l-1] + dp[child.value][l]) dfs(root) return dp[root.value][j] # 构建树 root = Node(1) root.children.append(Node(2)) root.children.append(Node(3)) root.children[0].children.append(Node(4)) root.children[0].children.append(Node(5)) root.children[1].children.append(Node(6)) # 求解最大奖金 j = 3 max_bonus_value = max_bonus(root, j) print("最大奖金为:", max_bonus_value) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值