题目链接
https://lydsy.com/JudgeOnline/problem.php?id=2671
题解
对于一对(a,b)(a,b)(a,b)满足a+b∣aba+b\mid aba+b∣ab,假设d=gcd(a,b),a=xd,b=ydd=\gcd(a,b),a=xd,b=ydd=gcd(a,b),a=xd,b=yd,那么
xd+yd∣xyd2x+y∣xydx+y∣d xd+yd\mid xyd^2\\ x+y\mid xyd\\ x+y\mid d xd+yd∣xyd2x+y∣xydx+y∣d
设m=⌊n⌋m=\lfloor\sqrt{n}\rfloorm=⌊n⌋答案就是
∑j=1m∑i=1j−1⌊ni+j⌋[gcd(i,j)=1]=∑d=1mμ(d)∑j=1⌊m/d⌋∑i=1j−1⌊nd2(i+j)⌋ \begin{aligned} & \sum_{j=1}^{m}\sum_{i=1}^{j-1}\lfloor\frac{n}{i+j}\rfloor [\gcd(i,j)=1]\\ = & \sum_{d=1}^{m}\mu(d)\sum_{j=1}^{\lfloor m/d\rfloor}\sum_{i=1}^{j-1}\lfloor\frac{n}{d^2(i+j)}\rfloor \end{aligned} =j=1∑mi=1∑j−1⌊i+jn⌋[gcd(i,j)=1]d=1∑mμ(d)j=1∑⌊m/d⌋i=1∑j−1⌊d2(i+j)n⌋
复杂度大概是O(n3/4)O(n^{3/4})O(n3/4)的,这个请大家自行证明。
代码
#include <cmath>
#include <cstdio>
#include <algorithm>
int read()
{
int x=0,f=1;
char ch=getchar();
while((ch<'0')||(ch>'9'))
{
if(ch=='-')
{
f=-f;
}
ch=getchar();
}
while((ch>='0')&&(ch<='9'))
{
x=x*10+ch-'0';
ch=getchar();
}
return x*f;
}
const int maxn=65536;
int p[maxn+10],prime[maxn+10],cnt,mu[maxn+10];
int getprime()
{
p[1]=mu[1]=1;
for(int i=2; i<=maxn; ++i)
{
if(!p[i])
{
prime[++cnt]=i;
mu[i]=-1;
}
for(int j=1; (j<=cnt)&&(i*prime[j]<=maxn); ++j)
{
int x=i*prime[j];
p[x]=1;
if(i%prime[j]==0)
{
mu[x]=0;
break;
}
mu[x]=-mu[i];
}
}
return 0;
}
long long calc(int n,int d)
{
long long ans=0;
for(int i=1; i<=d; ++i)
{
int t=n/i;
for(int l=i+1,r; (l<(i<<1))&&(l<=t); l=r+1)
{
r=std::min((i<<1)-1,t/(t/l));
ans+=1ll*(r-l+1)*(t/l);
}
}
return ans;
}
int n,s;
int main()
{
getprime();
n=read();
s=sqrt(n);
long long ans=0;
for(int i=1; i<=s; ++i)
{
ans+=mu[i]*calc(n/i/i,s/i);
}
printf("%lld\n",ans);
return 0;
}